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Abstract

Landscape connectivity is an important component of systematic conservation plan-
ning. Step-selection functions (SSFs) is a highly promising method for connectivity
modeling. However, differences in movement behavior across individuals and sea-
sons are usually not considered in current SSF-based analyses, potentially leading
to imprecise connectivity models. Here, our objective was to use SSFs to build
functional connectivity models for African elephants Loxodonta africana in a sea-
sonal environment to illustrate the temporal variability of functional landscape con-
nectivity. We provide a methodological framework for integrating detected inter-
individual variability into resistance surface modeling, for assessing how landscape
connectivity changes across seasons, and for evaluating how seasonal connectivity
differences affect predictions of movement corridors. Using radio-tracking data
from elephants in the Borderland area between Kenya and Tanzania, we applied
SSFs to create seasonal landscape resistance surfaces. Based on seasonal models,
we predicted movement corridors connecting major protected areas (PAs) using cir-
cuit theory and least-cost path analysis. Our findings demonstrate that individual
variability and seasonality lead to substantial changes in landscape connectivity and
predicted movement corridors. Specifically, we show that the models disregarding
seasonal resource fluctuations underestimate connectivity for the wet and transi-
tional seasons, and overestimate connectivity for the dry season. Based on our sea-
sonal models, we predicted a connectivity network between large PAs and
highlight seasonal and consistent patterns that are most important for effective
management planning. Our findings reveal that elephant movements in the border-
land between Kenya and Tanzania are essential for maintaining connectivity in the
dry season, and that existing corridors do not protect these movements in full
extent.

Introduction

Developing effective management schemes for maintaining
landscape connectivity in rapidly changing environments is
one of the major tasks in systematic conservation planning
(Margules & Pressey, 2000; Rudnick et al., 2012). The con-
cept of landscape connectivity is often the basis for building
corridors, which have been widely used in the field of con-
servation planning (Brooker, Brooker & Cale, 1999; Pelletier
et al., 2014). The corridors need to be designed while taking

into account actual behaviors and dispersal abilities, because
landscape connectivity is both species- and landscape-speci-
fic. In contrast to structural connectivity, functional connec-
tivity comprises the response of individuals to landscape
features (Brooks, 2003; Benz et al., 2016). For effective con-
servation planning, models based on functional connectivity
have a large potential as they reflect more than just species
habitat preferences and can integrate spatial and temporal
dynamics (Baguette & Van Dyck, 2007; Goswami & Vasu-
dev, 2017).

Animal Conservation �� (2018) ��–�� ª 2018 The Zoological Society of London 1

Animal Conservation. Print ISSN 1367-9430

http://orcid.org/0000-0001-6165-6263
http://orcid.org/0000-0001-6165-6263
http://orcid.org/0000-0001-6165-6263


Functional connectivity and conservation corridors model-
ing is commonly achieved using landscape resistance sur-
faces (Beier, Majka & Spencer, 2008). The resistance
surfaces represent spatially explicit probabilities of species
movement considering environmental conditions, behavioral
states and mortality risk (Zeller, McGarigal & Whiteley,
2012). A variety of datasets and methods can be used to
model landscape resistance, including habitat suitability anal-
ysis or expert opinion (Keeley, Beier & Gagnon, 2016; Mila-
nesi et al., 2017; Mui et al., 2017). However, connectivity
models based on such data may not adequately reflect move-
ment across the landscape and may have a tendency to
underestimate functional connectivity (Mateo-S�anchez et al.,
2015; Roffler et al., 2016; Zi�ołkowska et al., 2016).

Hence, connectivity models and underlying landscape
resistance surfaces should be based on empirical movement
data (Zeller et al., 2012). Step selection functions (SSFs) are
a relatively recent but promising approach for analyzing such
movement data to calculate resistance surfaces (Richard &
Armstrong, 2010; Zeller et al., 2012). SSFs allow estimating
the strength of habitat selection by animals moving through
a landscape using VHF or GPS data (Fortin, Morales &
Boyce, 2005; Thurfjell, Ciuti & Boyce, 2014). Using actual
movement steps or paths is more suitable for landscape resis-
tance modeling as this reflects actual movements, rather than
the simple presence of a species at a certain location (Zeller
et al., 2012, 2015; Keeley et al., 2016). Empirical movement
steps or paths have successfully been applied to model func-
tional connectivity and to predict movement corridors in a
variety of species (Forester, Im & Rathouz, 2009; Roever,
van Aarde & Leggett, 2013; Signer, Fieberg & Avgar,
2017). Nevertheless, several analytical issues remain, particu-
larly with respect to applying SSFs for resistance modeling.

First, it is a common practice in resource selection studies
to use mixed effects models with individuals as random
terms, or to average individual coefficients for obtaining pop-
ulation level coefficients (Duchesne, Fortin & Courbin, 2010;
Fieberg et al., 2010; Killeen et al., 2014). However, with
very high individual-level differences and relatively small
sample size, this approach could lead to overgeneralization
and spatial biases. Observed inter-individual differences in
resource selection could be due to individual life history,
spatial memory and animal personality, all of which can
strongly affect species dispersion and distribution within
habitats (Wolf & Weissing, 2012). In theory, individual-
based SSF models account for the animals’ knowledge of
the area because the selection procedure is always restricted
to its home range. Randomly distributed individuals with
highly overlapping home ranges and a large sample size will
have a relatively equal input for a resistance surface model-
ing, and averaging of individual contributions is a suitable
approach in such cases. However, it is rarely the case in
telemetry studies, considering equipment costs and employ-
ment efforts (Hebblewhite & Haydon, 2010). Small, unequal
sample sizes with spatially unevenly distributed animals
might impact resource selection functions, including SSFs.
Specifically, averaging of SSF coefficients across all individ-
uals may predict lower resistance values where sample size

is larger, that is, selection of well-presented areas for move-
ment will appear stronger, only because more sampled indi-
viduals used an area. Indeed, inter-individual variability
might also be detected simply because individuals find dif-
ferent environmental conditions to choose from within their
home ranges, but would not actually show behavioral vari-
ability if they were exposed to the exact same conditions.
Because of this, detecting inter-individual variability is par-
ticularly likely in cases when individuals were sampled
across a large, heterogeneous study area, and when the sam-
pling intensity varies across space. Hence, spatially inhomo-
geneous distribution of movement data requires a different
way for interpolating SSF coefficients to avoid a spatial bias.

Second, disregarding seasonal variations in the environ-
ment can be another source of uncertainty when spatially
interpolating results from SSFs to landscape resistance. For
instance, resources availability is limited during dry seasons,
especially in arid and semi-arid areas. Under these condi-
tions, animal movement can be restricted compared to the
wet season, simply because individuals only move among
the few available resource patches. Consequently, landscape-
wide resistance predicted from dry-season movement data
will be higher compared to the wet season, and seasonal
movement corridors might have different spatial arrange-
ments and predicted intensity of use. Thus, understanding
how connectivity changes across seasons and how these
changes affect landscape connectivity may comprise vital
information for effective conservation planning.

In this study, we used GPS movement data obtained from
collared elephants from the Greater Amboseli Ecosystem
(GAE) in Eastern Africa to illustrate that accounting for sea-
sonality can strongly impact our understanding of functional
connectivity and alters predicted movement corridors. We
chose the African elephant Loxodonta africana as the focal
species for representing landscape connectivity in this region,
as this species is a keystone megafauna that substantially
impacts the vegetation and wildlife distributions in their
environments and are likely a good umbrella species of con-
nectivity across the landscape (Western, 1989; Epps et al.,
2011).

Using the elephant data, we applied SSFs to estimate
resistance to movement in wet, dry and transitional seasons.
As elephants have a good spatial memory and strong indi-
vidual habitat preferences (Polansky, Kilian & Wittemyer,
2015), we offer an analytical approach for dealing with spa-
tial sampling bias where unequal amounts of movement data
are available for different parts of the study area (i.e. differ-
ent number of collared individuals and different number of
fixes per individual). Using movement data simulations, we
demonstrate that resistance surfaces modeled using our
approach have higher predictive power compared to the com-
mon method of simply averaging coefficients equally across
individuals. We compared seasonal connectivity and pre-
dicted movement corridors using morphological spatial pat-
tern analysis (MSPA) and graph theoretic analysis (Vogt
et al., 2006; McRae et al., 2008). We verified that the model
that not accounting for seasonal changes overestimates over-
all landscape connectivity for the dry season, and
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underestimates it for the wet season. Based on seasonal
resistance surfaces, we predicted movement corridors con-
necting large protected areas (PAs) and compared their rela-
tive importance for maintaining connectivity in each season.

Materials and methods

Study area

The study area covers approximately 50 000 km2 and is
located in the Borderland between Kenya and Tanzania. The
Borderland encompasses the GAE and extends to the South
Rift valley (Fig. 1). The region encloses 36 nationally pro-
tected lands and large segments of non-PAs belong to group
ranches that play an important role in local wildlife conser-
vation initiatives (Ntiati, 2002; Browne-Nu~nez, Jacobson &
Vaske, 2013). Intensive agricultural development, including
fencing, in non-protected lands together with rapid human
population growth increases the potential for fragmentation,
connectivity loss, and human–wildlife conflict (Western,
1975, 2007; Okello & D’amour, 2008).

Telemetry data

We obtained GPS telemetry data from 14 elephants collared
within the area of Amboseli-West Kilimanjaro and South-
Rift-Magadi Ecosystems. Information on collars types and
collaring operation is available in Ngene et al. (2014). Fix
rates, sample sizes and collaring locations are presented in
Appendix S1 in Supporting Information (Table S1). The
movement data were regularized to 4 h intervals. In cases
where collars failed to receive the signal in more than 8 h,
the trajectories were burstified, and the bursts with <10 steps
were excluded from further analysis.

Environmental layers

Environmental data were collected from publicly available
Geographic Information System (GIS) datasets and deriva-
tives from remote sensing data (Table S2, Appendix S1).

GIS layers

The GIS raster and vector data used in the analysis are pre-
sented in Table S2, Appendix S1. All vector layers were
reprojected to the Cartesian coordinate system (UTM) and
rasterized to a cell size of 250. Final surfaces were trans-
formed to continuous surfaces where each pixel represents
the Euclidean distance to the nearest target features.

Remote-sensing analysis

We acquired satellite data from three global remote sensing
missions: Terra, SRTM and Landsat (Table S2,
Appendix S1). The normalized difference vegetation index
(NDVI) derived from MODIS has been shown in previous
studies as a reliable proxy of forage quality for large mam-
mals, including African elephant (Ryan et al., 2012; Wall,

2015). Using the NDVI time series allows reproduction of
vegetation productivity dynamics corresponding to the real
seasonal vegetation changes (Ngene, 2010; Bohrer et al.,
2014). We created a time series on the monthly NDVI ima-
gery corresponding to the entire time frame of available ele-
phant GPS movement data (2007–2015).

We used multispectral Landsat 8 satellite imagery for land
cover classification. The workflow of the supervised classifi-
cation, post classification analysis and accuracy assessment
are provided in the Appendix S2. We included in the model
the proportional coverage of three major land cover classes
(grassland, bushland and woodland). The proportion of each
class was calculated by applying a circular buffer to each
pixel of a raster surface with the radius of the average step
length pooled over all elephants (1337 m).

Resistance to movement modeling

Step-selection function

SSFs require information on habitat crossed by an animal
during movement, that is habitat values are quantified along
a line connecting two consecutive animal locations. This
‘used’ habitat is then compared to ‘available’ habitat, which
means that habitat variables are collected along alternative
steps where an animal could potentially have moved given
the step lengths and angle distributions (Fortin et al., 2005;
Forester et al., 2009). Each used step is compared to the set
of available steps using conditional logistic regression
(Manly et al., 2002; Johnson et al., 2006). SSFs take the
form:

bwðxÞ ¼ expðb1x1 þ b2x2 þ � � � bpxpÞ

where bwðxÞ is an exponential function given the sample of
used and available habitat variables; b1 . . . bp are estimated
regression coefficients; and x1 . . . xp are predictor covariates
(Fortin et al., 2005; Thurfjell et al., 2014).

We simulated 10 ‘control’ (available) steps to each ‘case’
(used) step, and used step lengths drawn from a Gamma dis-
tribution with rate and shape parameters estimated from the
empirical data (step lengths distribution for all collared ele-
phants) using maximum likelihood (rhr R package) (Signer
& Balkenhol, 2015). Turning angles for the control steps
were drawn from a uniform distribution between �p and p.
We collected environmental values crossed by a spatial line
representing an animal’s step. The average of these values
characterizes the habitats choices (used and available). The
methodological framework with data analysis steps is pre-
sented in Fig. 2.

For NDVI, we sampled movement data according to the
exact date (year/month) in the time series and extracted
NDVI values for each corresponding stratum. For the sea-
sonal models, we subset movement paths for the wet, dry
and early dry seasons. Seasonality was estimated from the
results of the long-term annual field monitoring based on
vegetation productivity conducted by the African Conserva-
tion Center (see Table S3).
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Figure 1 Study area and functional connectivity maps for all-in-one and transitional seasonal models.
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We tested environmental variables for collinearity using
pairwise scatterplots and Pearson correlation. Each pair had a
correlation coefficient <0.7, so all variables were retained for
further analysis (Zuur, Ieno & Elphick, 2010).

Conditional multiple logistic regression models were built
for each individual by including all possible permutations of
explanatory variables including full (all environmental vari-
ables are included) and null (no environmental variables

Figure 2 Workflow chart of the SSF modeling and functional connectivity assessment. SSF, step selection function; MSPA, morphological

spatial patterns analysis; PA, protected areas; AIC, Akaike information criterion; MCP, minimum convex polygon.
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included) models. We applied both-way stepwise selection
using Akaike information criterion (AIC) and choose the
model with the lowest AIC score (Akaike, 1974; Zar, 1996;
Venables & Ripley, 2013).

To evaluate variability in individual step-selection, we
compared the relative contribution of environmental covari-
ates among seasons using Jaccard index of similarity. We
assigned a value of 1 (‘present’) to a variable when its coef-
ficient was included in the best model (lowest AIC score),
and 0 when it was excluded from the best model (‘absent’).

Landscape resistance modeling

We spatially interpolated the results from SSFs by calculat-
ing the relative selection strength (Avgar et al., 2017) for
each point of the raster image and then applying pixel-wise
logit transformations for obtaining the 0–1 scaled probability
values. The inverse values of these probabilities represent
landscape resistance to movement surface. To adequately
reflect all individuals with their potential variability in step-
selection (due either to actual behavioral differences or due
to sampling bias), we calculated a spatial weight matrix
based on the inverse distance of each pixel to the individ-
ual’s home-range center. For this, we estimated home ranges
using 95% minimum convex polygon (Anderson, 1982), and
normalized distance values across all individuals so that the
sum of inverse distances for each cell in the landscape ran-
ged from 0 to 1 and summed to 1 across individuals for
each cell. See Appendix S3 in Supporting Information for
details and an example. We then applied a weighted overlay,
where we summed the movement probability layers of all
individuals after weighting them by the corresponding dis-
tance-to-home-range-center layer. The inverse of these move-
ment probability surfaces represents landscape resistance
surfaces, which we used for functional connectivity modeling
(see next section). All analyses were performed using the
raster package in R (Hijmans 2016).

For validating the predictive power of the applied frame-
work, we modeled resistance surfaces using two different
methods: distance-to-home-range-center overlay (weighted
overlay) and by averaging individual regression coefficients
(averaging) (Fieberg et al., 2010). We followed a leave-one-
out validation procedure, and excluded the movement data
of each individual for constructing resistance surfaces using
both approaches, so that we created 28 resistance surfaces in
total (14 using weighted overlay, and 14 for using averag-
ing). We then simulated movements for each left-out individ-
ual based on the respective resistance surfaces using the
starting point and number of steps of the excluded individual
(Quaglietta & Porto, 2018). In these simulations, the choice
of steps of each individual was defined by the values of the
underlying resistance surface: the lower the predicted resis-
tance, the higher the probability that the next step will transit
this area. Finally, we calculated utilization distributions (UD)
for empirical and simulated movement data to compare
actual movement patterns with those predicted from the two
different methods (weighted overlay vs. simple averaging).
Specifically, we used 90% kernel density estimators to

quantify UDs reflecting individual movement behavior and
estimated the overlap between the UD derived from actual
movement data and simulated tracks. The overlap index
takes values from 0 to 1 with larger values indicating greater
overlap between the two UDs (Fieberg & Kochanny, 2005).
We repeated the movement simulations and overlapped cal-
culations 100 times per individual. Finally, we compared the
overlap between the weighted overlay versus averaging
approach. We can expect a higher overlap between real and
simulated movements for the approach that leads to resis-
tance surfaces that better capture actual movements of indi-
viduals.

Functional landscape connectivity model

MSPA

We compared landscape permeability (the proportion of land-
scape that most likely provides connectivity) of the all-in-
one (the surface calculated for all dataset disregarding the
seasons) and seasonal resistance maps through morphological
spatial pattern analysis (MSPA) (Soille & Vogt, 2009). We
used three descriptive categories: cores represent non-frag-
mented patches highly suitable for movements, islets repre-
sent fragmented smaller patches and connectors represent
corridors connecting cores and islets (Vogt et al., 2006,
2007; Soille & Vogt, 2009).

We reclassified the resistance maps to Boolean images by
applying a set of successive classification thresholds starting
from 0.5 with increases of 0.02. The MSPA classification
was conducted through Guidos Toolbox (Vogt et al., 2006)
and iteratively applied to each set of binary images until
increasing the threshold was equal to one. For estimating
overall accuracy and potential pitfalls of the all-in-one
model, we built a confusion matrix where the all-in-one
model’s number of elements (cores, islets and connectors)
was compared to the number of the same elements in sea-
sonal models.

Least-cost path and circuit theory

We built seasonal functional connectivity networks among
the core areas (largest national parks and conservancies)
using circuit theory and least-cost path (LCP) methods
(Fig. 1). The LCP approach estimates the shortest distance
between target nodes (i.e. PAs) while accounting for resis-
tance to movement (Adriaensen et al., 2003). Circuit-theore-
tic connectivity can be assessed using graph-theoretic metrics
that can be directly interpreted in landscape connectivity
terms (McRae et al., 2008). The amount of current running
through the nodes reflects the likelihood of random walks
along graph edges (Shah & McRae, 2008; Carroll, McRae &
Brookes, 2012). Estimated effective resistance values (con-
nectivity measure within a least-cost corridor) enables the
calculation of current flow centrality across the network (cen-
trality score). The centrality score represents how important
a link or core area is for overall network connectivity
(McRae et al., 2008). We calculated, normalized and
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mosaicked the cost-weighted distance (CWD) surfaces for
building a single composite corridor map. We estimated cur-
rent flow, effective resistances, cores and corridors centrality
scores (Carroll et al., 2012). Finally, we predicted LCPs for
each pair of the PAs in the study area. The analysis was
implemented in Linkage Mapper (ArcGIS 10.3.1) (McRae &
Kavanagh, 2011).

Results

SSF models

The all-in-one SSF model revealed high inter-individual vari-
ability in habitat preferences (Table S3, Appendix S1). The
number of explanatory variables selected in the final model
ranged from 12 (one individual) to five (two individuals),
with an average of 7.86 � 2.07 dependent variables affecting
individual movement choices. NDVI and distance to PA
were significant explanatory variables for most individuals
(11 and nine individuals respectively). Anthropogenic factors,
such as distance to developments area and distance to roads,
were significant for 9 out of 14 individuals. Distance to large
water surfaces and distances to towns were important only
for half the individuals (7 out of 14).

Overall, seasonal models retained less dependent variables
than the all-in-one model. The average number of habitat
variables selected was 6.14 � 2.0, 6.71 � 2.16 and 5.88 �
2.31 for wet, dry and early dry seasons, respectively. NDVI
was included in the models for almost all individuals in the
wet season (12 out of 14), but was less important for the
dry (10 out of 14) and early dry season (4 out of 8). Dis-
tance to PAs in the seasonal models was less important than
in the all-in-one model (6 out of 14 for the wet season, 7
out of 14 for dry seasons, and 3 out of 8 models for the
early dry season; Table S3, Appendix S1). Jaccard indices
calculated for coefficients across the seasons are less or
equal to 0.5, which indicates low similarity between the data
clusters (mean index values are below 0.5 for all compared
pairs; Fig. 4).

Resistance to movement surface
interpolation

Accounting for individual variability

The results of our simulation-based validation confirmed that
the weighted overlay produces more accurate predictions for
animal movements compared to the averaging method. The
surface modeled using averaging coefficients is sensitive to
the spatial sampling distribution: it produced very low resis-
tance values in the area where numerous individuals were
collared, and high resistance values in the areas with a smal-
ler sample size (Appendix S4). Tests with simulations con-
firmed the lower predictive power of the first method. All 14
resistance surfaces modeled with weighted overlay led to
simulated UDs that have a higher overlap with the actual
movements of the animal excluded from the resistance inter-
polation (Fig. 3). Individual movement predictions based on

weighted overlay surfaces were consistently better for all sur-
faces despite the spatial affiliation or home-range size of
tested individuals (Fig. S3, Appendix S4).

Accounting for seasonal patterns

Seasonal resistance to movement surfaces reflect the differ-
ences in habitat preferences between the seasons
(Appendix S5). In the all-in-one surface, the proportion of
pixels with lower resistance values (<0.5) is 0.34, and the
values increase to 0.5 in both the wet and early dry seasons.
In the dry season, the proportion of lower resistance pixels
is 0.27. The Pearson correlation coefficients for all pairs of
resistance surfaces had values <0.7, except for all-in-one and
dry season surfaces (r = 0.75).

Morphological spatial pattern analysis

The proportion of elements changes within the three mor-
phological categories (cores, islets and connectors) for 23
classification thresholds (Fig. 4). The overall accuracy of
the seasonal models ranged from 0 to 30% across all clas-
sification thresholds (Table 1). The dry seasonal model
tended to overestimate the number of elements (61%, 39%
and 73% of elements are overestimated for the cores, islets
and connectors accordingly); while for the wet season it
tends to underestimate element numbers (70%, 57% and
83% are underestimated). The number of elements for islets
and connectors are underestimated for the early dry season
(61% and 57% accordingly), but the number of elements
for cores are either underestimated or overestimated (48%
of underestimates, and 52% of overestimates) (Table 1;
Fig. 5).

Circuit-based and LCP analysis

Using circuit-based analysis and LCP, we modeled eight
wide-ranging corridors maintaining overall functional connec-
tivity between five large PAs (Tables S3 and S4,
Appendix S5). Connectivity parameters support the results of
the morphological spatial pattern analysis. The five most
prominent corridors modeled based on the all-in-one resis-
tance surface have higher effective resistance values com-
pared to the wet season, and lower resistance values for the
dry season. The lowest resistance values and CWD/path
ratios were assigned to wet and early dry seasons, and the
values decreased in the dry season (Table 3).

Amboseli National Park (NP), Enduimet and Shompole
Conservancy have the highest current-flow centrality score
and are always ranked among the top three despite seasonal
differences (Table 2). The most important cumulative corri-
dors were predicted for Amboseli and Enduimet; Amboseli
and Tsavo West (including Chyulu Hills); Enduimet and
Shompole. These three linkages are in the top three based
on centrality ranking and have the lowest effective resistance
values (Table S3, Appendix S5).

LCPs calculated for the wet season have a tendency to
converge in the center of the study area connecting the west
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and east (Fig. S6 in Appendix S5). Wet and early dry sea-
sons have a larger potential for providing connectivity in the
north-western direction. Early dry season provides an alterna-
tive path between Chyulu Hills and Olkiramatian that does
not exist for other seasons. Furthermore, early dry and dry
seasons demonstrate increasing permeability of the Tanza-
nia’s side (Appendix S5).

Discussion

Using an empirical movement dataset of elephants, our study
shows substantial variability in landscape connectivity and
predicted movement corridors across seasons. Furthermore,
our study also shows that accounting for observed inter-indi-
vidual variability, which is either caused by actual behavioral

Figure 3 Overlap volumes calculated between utilization distributions (UD overlap volume] of collared elephants and simulated movement

tracks (90% kernel density estimation). Each facet represents one individual excluded from resistance surface interpolation, and simulations

(N = 100) based on this resistance surface. The data were simulated using two interpolation techniques: averaging regression coefficients

(dark gray boxes) and weighted overlay using a distance to home-range center matrix (light gray boxes).

Figure 4 Jaccard index estimated for each pair of general and seasonal model. Gen, general model; Wet, wet season model; E.dry, early

dry season model; Dry, dry season model.
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differences in movement preferences, or by spatial sampling
bias, significantly improves the ability to accurately predict
movements from the modeled resistance surfaces. Hence, it
is fundamental that corridor design accounts for seasonal dif-
ferences and inter-individual variability. Indeed, integrating
dynamic changes is among the most important factors for
effective conservation applications, and one of the best
approaches for conservation planning is to focus on preserv-
ing connectivity rather than large protected lands (Margules
& Pressey, 2000; Pressey et al., 2007).

Accounting for individual variability

Individual differences and their effects on species ecology
have been much debated (Bolnick et al., 2011; Maiorano
et al., 2017). Individual variability is an influential factor for
resistance surface modeling, particularly when collaring of
individuals was unevenly distributed across the study area.
Here, we suggest a framework using a weight matrix for
modeling the overall resistance surface. Each resistance value
obtained for an individual is weighted by the distance to the
home-range center and our validation confirmed that the typ-
ically used averaging method produces spatial biases caused
by relatively small sample size and uneven distribution of
collared animals. Simple coefficient averaging predicts an
overly simplistic resistance surface with extremely low resis-
tance values in the area with larger sample size, and high
resistance where only few animals were collared
(Appendix S4). In contrary, the weighted overlay produces a
smoother distribution of resistance values and balance-out
the data discrepancy. This problem is particularly apparent
for the South Rift region in the study area, where only two
individuals were collared (F4 and M10, Fig. 3). These ani-
mals’ home ranges are relatively small and isolated from the
rest of collared animals (Shompole and Olkiramatian Conser-
vancies, Appendix S4). As expected, the simulation predic-
tions are very poor for the averaged model, while weighted
overlay produced a very strong prediction (e.g. F4 overlap-
ping indices are 0.03 � 0.003 and 0.82 � 0.160 for first
and second methods accordingly, Fig. 3).

We conclude that the weighted overlay method outper-
forms coefficient averaging for studies implemented on rela-
tively small datasets of species that show strong individual
variability. The offered approach allows to adjust the resis-
tance interpolation according to the proximity to the sam-
pling domains (each individual), and avoid spatial biases.
Nevertheless, coefficient averaging might have an adequate

Table 1 Confusion matrix

Cores (%)

Dry season Wet season Early dry season

Accuracy 30.43 21.74 0.00

Underestimates 8.70 69.57 47.83

Overestimates 60.87 8.70 52.17

Islets (%)

Accuracy 30.43 26.09 4.35

Underestimates 30.43 56.52 60.87

Overestimates 39.13 17.39 34.78

Connectors (bridges and loops) (%)

Accuracy 21.74 17.39 8.70

Underestimates 4.35 82.61 56.52

Overestimates 73.91 0.00 34.78

All-in-one model accuracy assessment using morphological spatial

patterns analysis categories. Accuracy: Proportion of cases with

equal number of elements (i.e. cores, islets, or connectors) pre-

dicted for all-in-one and seasonal model. Underestimates: Propor-

tion of cases with smaller number of elements predicted for all-in-

one compared to the seasonal model. Overestimates: Proportion of

cases with larger number of elements predicted for all-in-one com-

pared to the seasonal model.

Figure 5 Number of elements in each morphological class (cores, islets and connectors) calculated from the resistance surfaces and plotted

against different classification thresholds.
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predictive power for studies with a larger sample size, where
study animals are evenly distributed within the area.

Comparing seasonal connectivity models

To compare the all-in-one connectivity model to the seasonal
models, we applied two conceptually distinct methods: MSPA
and circuit theory analysis. The first method allows the estima-
tion of patch-based metrics and is based on a patch-corridor-
matrix concept (Forman, 1995; Zeller et al., 2017). The
approach requires a binary classification and treats the area
with low potential connectivity as a non-permeable matrix.
However, a number of studies have shown that matrix quality
can be heterogeneous and be responsible for different level of
patches isolation (Vandermeer & Carvajal, 2001; Revilla
et al., 2004). In contrast, circuit analysis simulates random
walkers across a continuous surface, and, therefore, uses the
full permeability potential for predicting corridors.

The results of our research confirmed the assumption that
the all-in-one model underestimated connectivity for the wet
season and overestimated connectivity for the dry season. We
used seasonal changes of NDVI values as a surrogate for
resource availability, and large herbivores are known to travel
with the seasonal ‘wave of green-up’ to provide themselves
enough food and water (Birkett et al., 2012; Merkle et al.,
2016). We assume that these changes are captured by the sea-
sonal connectivity models. Results of MSPA supported our
conclusion of decreasing connectivity from wet to dry seasons.
Overall, the accuracy of the all-in-one model was small com-
pared to the seasonal models (<30%, Table 1). The wet season
provides the highest number of corridors and patches; while
the dry season has a lower number of core areas, thus, the
landscape is less variable and provides fewer possible connec-
tors between habitat patches.

Identifying stable connectivity patterns
across seasons

The seasonally stable connectivity patterns discovered in this
research are particularly interesting as they complement
hypotheses about population structure and distribution of
elephants in the GAE (Kikoti, 2009; Moss, Croze & Lee,
2011). The results suggest that connectivity in the north-
south direction via the Kenya-Tanzania border is higher than
connectivity in the east-west direction for all seasons. This
highlights the importance of Borderland movements for

maintaining overall landscape connectivity. Previous studies
suggested that the Amboseli elephant population extents
only to the Chyulu Hills and Tsavo West (Moss et al.,
2011). Indeed, the predicted corridor connecting Amboseli
NP and Chyulu Hills was always ranked high in centrality
score for all seasons. However, distinctive transboundary
movements indicate that the elephants of southern Kenya
and northern Tanzania are part of a single, contiguous popu-
lation (Western, 2007; Kikoti, 2009). The Amboseli NP and
the corridor between Amboseli and Enduimet PAs had the
highest current-flow centrality scores and the lowest resis-
tance for all seasonal connectivity models. A relatively short
corridor connecting Kenya and Tanzania appears to be
essential for elephant movements; aerial surveys confirm
high concentrations of family groups within the same corri-
dor in both the wet and dry seasons (KWS/TAWIRI report,
unpubl. data, 2015).

Despite higher connectivity between the southern and
northern ends of the study area, the high connectivity poten-
tial between the Amboseli Ecosystem and the South Rift
Valley remains stable across all seasons (Table 3). Even
though it is not certain whether elephant families from the
South Rift and Amboseli form one single population, genetic
studies showed independent colonization of the South Rift
area between Amboseli and Maasai Mara NP (Ahlering
et al., 2012a). Shompole Conservancy has slowly been
recolonized by elephants over the past decade since the
establishment of community conservancies in this area
(Ahlering et al., 2012b). Elephant population growth, exten-
sive agriculture developments and new electric fencing
around Amboseli NP might push elephants out of the com-
monly used area to the safe conditions (Western, 2007;
Okello & D’amour, 2008; Okello et al., 2015). Our results
suggest that in addition to preserving the undoubtedly impor-
tant Borderland corridor, special attention should be given to
the corridors connecting Amboseli and the South Rift.

Implications for conservation

Here, we modeled movement corridors connecting large PAs
and assessed their relative contribution in conserving land-
scape connectivity for the elephants. Preserving connectivity
across non-protected lands is a critical issue for fragmented
populations of African elephants as the PAs are not large
enough to maintain viable population sizes (Armbruster &
Lande, 1993).

Table 2 Protection areas (PA) centrality and ranking estimated using circuit theory

PA

All-in-one model Wet season Dry season Early dry season

Core centrality Rank Core centrality Rank Core centrality Rank Core centrality Rank

Amboseli 6.20 2 6.56 3 6.50 3 7.26 1

Tsavo West and Chyulu Hills 5.02 4 4.19 4 4.23 4 4.96 4

Enduimet 6.09 3 6.56 2 6.54 2 4.91 5

Shompole 7.13 1 7.03 1 7.03 1 6.29 2

Olkiramatian 4.00 5 4.00 5 4.00 5 5.43 3

A higher centrality value indicates greater importance of the PA for providing landscape-wide connectivity.
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Our study confirms that Amboseli NP is a stepping stone
in preserving cross-border connectivity, while Shompole
Conservancy is crucial for linking western and eastern parts
of the research area. The wetlands adjacent to the eastern
part of Shompole play a critical role in connectivity as all
LCPs connect through this area.

Furthermore, we verified the importance of existing pro-
tected historical corridors for preserving functional landscape
connectivity. The GAE contains two historically PAs,
Kimana and Kitenden, established by signing a lease
between conservation organizations [Africal Wildlife Foun-
dation and International Fund for Animal Welfare (IFAW)]
and local communities (Appendix S6). Our analysis indi-
cates that the Kimana corridor together with the Chyulu
Hills PA play a crucial role in preserving connectivity in
the eastern part of the study area, and its value is especially
high in the dry season. The Kimana corridor encompasses a
part of the swamps en route to the Chyulu Hills in an area
suffering from rapid agricultural expansion (98% increase
between 2010 and 2014; Space For Giants Report, 2015).
The Kitenden corridor connecting Amboseli NP with Tanza-
nia has a high potential for connectivity, but the corridor
with the highest current-flow centrality score and lowest
resistance predicted for all seasons was predicted to the
west of Kitenden (Appendix S6). Aerial count data support
the importance of this area (Amboseli/Enduimet corridor),
so it is highly recommended for consideration in any priori-
tization scheme in management plans (KWS, TAWIR
Report, 2013).

We conclude that it is highly desirable to incorporate sea-
sonal changes into functional connectivity models whenever
it is feasible. This is especially relevant for systems with
pronounced seasonal spatial variation in forage and water
availability. Extreme environmental conditions, such as low
rainfall or droughts, may significantly decrease landscape
permeability and should be considered with special care in
conservation prioritization and corridors planning.
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Table 3 Quantitative comparison of movement corridors predicted with least-cost and circuit-theory models

No. 1 2 3 4 5 6 7 8

CWD/patha

All-in-one model 0.29 0.34 0.50 0.26 0.44 0.42 0.53 –

Wet season 0.21 0.26 0.34 0.20 0.28 0.28 0.34 –

Early dry season 0.30 0.48 0.27 0.25 0.29 0.26 0.24 0.02

Dry season 0.30 0.47 0.61 0.26 0.48 0.48 0.63 –

Eff. resistb

All-in-one model 22.20 7.44 75.00 24.84 87.13 – 68.44 –

Wet season 17.93 5.32 66.43 20.57 – – 61.03 –

Early dry season 25.41 10.02 45.90 46.81 – 59.31 60.18 0.15

Dry season 45.45 9.61 257.76 49.57 – – 152.97 –

Centralityc

All-in-one model 2.41 3.82 2.18 1.96 1.68 – 2.40 –

Wet season 2.45 3.90 2.77 1.93 – – 3.30 –

Early dry season 3.42 4.12 1.50 1.48 – 1.26 1.25 4.14

Dry season 2.40 3.78 2.82 2.07 – – 3.24 –

Rank

All-in-one model 2 1 4 5 6 – 3 –

Wet season 2 1 4 5 – – 3 –

Early dry season 3 2 4 5 – 6 7 1

Dry season 4 1 3 5 – – 2 –

Corridors as they appears in the table above: (1) Amboseli/Tsavo West and Chyulu Hills; (2) Amboseli/Enduimet; (3) Amboseli/Shompole; (4)

Tsavo West and Chyulu Hills/Enduimet; (5) Tsavo West and Chyulu Hills/Shompole; (6) Tsavo West and Chyulu Hills/Olkiramatian; (7) Endui-

met/Shompole; (8) Amboseli/Olkiramatian.
aCWD/Path: ratio of cost-weighted distance to the unweighted length of the least-cost path (the distance traveled moving along the path).
bEff. resist: corridor’s effective resistance, a measure of connectivity that complements least-cost path.
cCentrality: calculated using circuit analysis; the parameter explains a contribution of each link to overall landscape connectivity.
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