technology to address citizen needs. This workshop will focus on how Fiber Optics, 5G, IoT, Wi Fi and CBRS have enabled innovation. We will specifically look at how Private Cellular 5G has expanded broadband and IoT solutions as well as the latest on the Federal and State Broadband Funding programs.

Keynote Speakers

MICHAEL SHERWOOD Chief Innovation Officer Las Vegas

BRIAN MITCHELL Director Governor's Office of Science Las Vegas PRESENTED BY: O' GraybaR.

Connected City Smart City

kajeet

DenseNetworks.com

The 2023 calendar will focus on how Network Technology and the Cloud are enabling innovative new capabilities and services. Broadband, Fiber, 5G, Private LTE, Wi-Fi, LoRa, and IoT are key enabling technologies we will explore.

We will look at successful Use Cases, Technology Architectures, Business Models and Funding mechanisms for Cities, Schools, Building Owners, Utilities and Transportation.

FOR MORE INFORMATION, CONTACT: @ PeterMurray@DenseNetworks.com \$ 267-237-5907

2023 CALENDAR

MARCH 23	Las Vegas, NV			
MARCH 28	Los Angeles, CA			
APRIL 27	Washington D.C.			
MAY 09	New Orleans, LA			
JUNE 07	Cary, NC			
SEPTEMBER 14	Colorado Springs, CO			
SEPTEMBER 21	Dallas, TX			
OCTOBER 12	Fort Myers, FL			
DECEMBER 7	Phoenix, AZ			

www.DenseNetworks.com

9:05 Welcome Peter Murray, Executive Director, Dense Networks
9:15 Keynote: Michael Sherwood-Chief Innovation Officer, Las Vegas
9:35 Connected Cities Innovation Peter Murray, Moderator Michael Sherwood, Chief Innovation Officer, Las Vegas Bart van Aardenne, CEO, Terranet Josh Broder, CEO, Tilson

Bill Baver, VP, NTT Data

Brett Lasher, AVP, Cox Communications

- 10:25 Break
- 10:45 Nevada Broadband Program Brian Mitchell, Broadband Manager, State of Nevada
- 11:15 Federal Broadband Funding-BEAD Andy Lipman, Lead Attorney, Morgan Lewis
- 11:40 Wireless Network Innovations Peter Murray, Moderator

Jamaal Smith, VP, Kajeet

Oren Binder, Director, OnGo Alliance

James Jacobellis, SVP, Alef

Cindy Malinchak, Strategic Advisor, Signify

		WELCOME TO ORLANDO
39 Years Network Deployment and Operations	 Verizon, Level 3, Peco/Adelphia Constructed 800 Mile Fiber Network to Schools, Hospitals, Carriers and Enterprise Customers in Philadelphia Region 	City Hall
NTIA Grant Reviewer	 Broadband for All Tribal Connecting Minority Communities 	E STY OF NDO
Professor	Temple UniversityCommunity College of Philadelphia	
2023-5 Grants out of 5 Grants awarded.	 Lee County-Total Grants and Match=\$20 million Osceola County-Total Grants and Match=\$15 million Orange County-\$16.1 ARPA funding committed 	

Digital Infrastructure

Scalable/Interconnected

San Jose Broadband Strategy

Fiber Backbone Open Access Model

The Utilities' Leverage

- Use of assets
 - Street Lighting poles allowing small cell growth in territory
 - Data access and availability
- Expansion of our fiber network
 - Pilot opportunities
- Facilitating Conversations
 - Utility is a common stakeholder in all smart city verticals

Utility Lease Model

Utilities of the Future:

- Over 2,000 miles of fiber buildout over the next 6 years
- Demand Side Management
- Distributed generation
- Advanced Metering Infrastructure

Fiber connectivity available to:

- Every address
- Every signalized intersection
- Every street light

Enabling infrastructure:

- High speed
- Low latency
- Highly secure
- Highly reliable

Office of Innovation

Tech Talk: Types of IoT Connectivity

	LTE Cat-1	LTE-M	NB-IoT	LoRa	Sigfox
Spectrum	Licensed	Licensed	Licensed	Unlicensed	Unlicensed
Bandwidth	20 MHz	1.4 MHz	180 KHz	125-500KHz	200 KHz
Biodirectional Data Transfer	Full Duplex	Half Duplex & Full Duplex	Half Duplex	Half Duplex	Half Duplex
Peak Data Rate	10 Mbps (DL) 5 Mbps (UL)	1 Mbps (DL) 1 Mbps (UL)	250 Kbps (DL) 230 Kbps (UL)	50 Kbps (DL) 50 Kbps (UL)	0,6 Mbps (DL) 0,1 Mbps (UL)
Typical Downlink Daily Throughput	Limited only by battery power, radio signaling condition and commercial terms			~200 B	~24 B
Typical Uplink Daily Throughput	(e.g. monthly data	volume, amount of message	~200 kB	~1,64 kB	
Max Coupling (vs. GSM)	144 dB (0 dB)	156 dB (+12 dB)	164 dB (+20 dB)	157 dB (+13 dB)	153 dB (+9 dB)
Expected Module Cost	>10\$	<10\$	<5\$	<7\$	<3\$
Epected Max. Battery Lifetime ¹	3-5 Years	5-10 Years	10+ Years	10+ Years	10+ Years

¹ Assuming typical traffic pattern and battery size

Table 1: Overview of IoT transmission technologies

IoT Connectivity Industry Landscape LoRaWAN targeted to address 55% of use cases

Hybrid Private Network

ARPA funds

B Brookings Metro

		Economic		
	Budgeted (\$)	disadvantage (\$)	Percentage (%)	Total Projects
Madison, Wisc.	22,800,000	21,800,000	95.6	28
Riverside, Calif.	29,242,594	27,090,000	92.6	29
Columbus, Ohio	53,284,081	48,209,406	90.5	8
St. Louis, Mo.	123,195,020	109,650,470	89.0	70
Nassau County, N.Y.	185,350,000	163,750,000	88.3	18
San Jose, Calif.	70,562,771	61,900,771	87.7	25
Clackamas County, Ore.	28,191,637	22,684,455	80.5	11
Washoe County, Nev.	46,312,296	37,192,053	80.3	25
Minneapolis, Minn.	108,527,983	84,885,905	78.2	67
Dane County, Wisc.	94,375,082	71,662,768	75.9	16
San Joaquin County, Calif.	66,011,593	49,932,146	75.6	11
Los Angeles County, Calif.	704,851,000	521,501,000	74.0	61
Prince William County, Va.	31,200,000	22,500,000	72.1	7
Northampton County, Pa.	22,658,617	15,704,262	69.3	6
San Mateo County, Calif.	74,448,909	50,748,909	68.2	19
Nashville-Davidson, Tenn.	78,381,250	51,713,996	66.0	17
Maricopa County, Ariz.	414,987,433	273,141,352	65.8	55
Pierce County, Wash.	175,781,445	115,159,256	65.5	79
Alameda County, Calif.	142,500,000	91,500,000	64.2	15
Phoenix, Ariz.	133,365,662	85,565,662	64.2	36
St Paul, Minn.	33,630,184	21,031,000	62.5	19
Orange County, Fla.	135,830,857	82,362,846	60.6	38
Ingham County, Mich.	29,601,971	17,318,000	58.5	13
York County, Pa.	65,753,816	37,983,311	57.8	105
Mesa. Ariz.	27.800.000	16.000.000	57.6	4

DenseNetworks.com

D

NE

W O R K S