Orange Belt

Reading Number Names to 10 Master Reading numbers when in written form	Ideas: Playing games such as dominoes or cards to match the number to the number name. Write down one, two, three, four, five, six, seven, eight, nine, ten and practise reading these cards.	Online activities: Activity 1 Activity 2 Activity 3
Recognising 1-10 Master Recognise numbers 1-10 in order and out of order	Ideas: Have visible numbers on display around your house. Have number cards from 1-10 and practise recognising these numbers.	Online activities: Activity 1 Activity 2 Activity 3
Counting backwards from 10 Master Being able to count backwards from 10-1	Ideas: Give children a random pile of 10 objects and get them to count backwards from 10 . Get them to verbally count backwards.	Online activities: Activity 1 Activity 2 Activity 3
Writing Master Being able to write numbers correctly from 1-10- no reversals	Ideas: Write numbers 1-10 and get children to trace these, making sure they start at the correct spot. Have a number line present in your house so that they can visually see the numbers daily.	Online activities: Activity 1 Activity 2 Activity 3
Order Master Able to put numbers in order from 1-10 correctly	Ideas: Make up number cards from 1-10 and mix them up. Get your child to move them into the correct order.	Online activities: Activity 1 Activity 2 Activity 3
1:1 Correspondance Master Being able to count and point to each number	Ideas: Ask students to count a collection of 10 objects and touch each one as they are counting. Another strategy is to move each object into a line to ensure they don't double count.	Online activities: Activity 1 Activity 2 Activity 3

Subitising Master Recognising a number of objects, up to 5, with no counting.	Ideas: Use dice with dots for board games. Remind your child that they don't always need to count; they can use their eyes. Guess how many things there are and	Activity 1 Activity 2:

	then count them.	$\underline{\text { Activity 3: }}$
Counting 1-20 Master. Being able to count from one to twenty using 1:1 correspondence.	Ideas: Practise counting whenever possible. Counting things whilst out shopping, whilst walking or driving. Read books that include counting.	Online activities: Activity 1
Writing to 20 Master. Students must write numbers from 1-20 in order with no reversals of numbers (5 as S or 2).	Ideas: Write numbers and have your child trace over them. Have a number line present in a popular place in your home so your child can visually see the way numbers are written...	$\underline{\underline{\text { Activity 3 }}}$
Activity 2 $:$		
Doubles Master. Knowing doubles facts from 1-10.	Ideas: Use playing cards for games like snap. Students need to add the matching cards and say the correct answer in order to keep the pile.	Online activities:
Ask doubles questions in the car whilst driving, whilst walking to school, whilst cooking dinner, etc	$\underline{\text { Activity 1 }}$	
Activity 2:		

Green Belt

Halving Master. Being able to halve all numbers to 20. Half of $8=$ Half of $18=$	Ideas: Remind children that halving is the opposite of doubling. Ask halving questions when possible. What is half of 8 ?	Online activities:
$\underline{\text { Activity } 1}$		
Addition Master. Adding numbers to 20 using doubles. Students should answer automatically and not count. $5+6$ is double 5 and 1 more. Or $5+6$ is	Ideas: Remind children that they know doubles and this is like doubles. Ask/Write questions. Use language like "5 and 6 is like double 5 and then add one more".	$\underline{\underline{\text { Activity } 3}}$

double 6		
Counting Master. Counting by 2, 5 and 10. Example: $\begin{aligned} & \text { 2,4,6,8,10,12,14,16,18,20. } \\ & 5,10,15 \ldots .50 .10,20,30 \ldots .100 . \end{aligned}$	Ideas: Practise saying and writing the counting patterns. Have them written down and placed in a prominent area of the house...	Online activities: Activity 1 Activity 2 Activity 3
Reading/Writing Master. Reading and writing numbers 0 999. Example: Students are given a number and have to read it aloud. Students hear the number and write it down.	Ideas: Ask children to write numbers between 0-999. Remind them that we read numbers from left to right and that numbers in the hundreds have 3 digits.	Online activities: Activity 1 Activity 2: Activity 3:
Renaming Master. Knowing the number of tens and ones in a number to 99 . Example: $15=1$ ten and 5 ones $57=5$ tens and 7 ones $89=8$ tens and 9 ones	Ideas: Students can be given a T-Chart with tens and ones written in each column to help. Give students a number and they have to verbally respond to how many tens and ones make that number	Online activities: Activity 1 Activity 2 Activity 3
Order Master. Ordering numbers from 0-999. Example: $\begin{aligned} & 224,35,753,187,983,300 \\ & 35,187,224,300,753,983 \end{aligned}$	Ideas: Write 10 random numbers between 0-999 and have students order. Roll a dice to make the 3-digit numbers randomly and then order.	Online activities: Activity 1 Activity 2: Activity 3
1 to 10 Master. Knowing facts for numbers up to 10 automatically. Example: 5 and $2=$ What is 2 less than $10=$ Double 3 and 1 more $=$	Ideas: Use playing cards to make questions. Only use cards 10 and under. Turn a card over and: One more / Two more, One less / Two less, Double it, Half it (where answer is a whole number)	Online activities: Activity 1

Purple Belt

Arrays Master. Calculating the number of dots in a rectangular pattern, using multiplication.	Ideas: Look for arrays in everyday life, eggs, muffins, cupcakes in cartons. Ask your student to calculate using multiplication of rows and columns. Make/download flash cards with different arrays.	Online activities: Activity 1 Roll two dice/use playing cards and use the numbers to draw an array and multiplication table. Online dice- https://freeonlinedice.com
$4 \times 6=24$		

Multiplication Tables Master. Recite 2, 3, 4, 5,, 10 multiplication tables. Example: 6 groups of 3 4 groups of 10	Ideas: Recite the multiplication tables. Print or make a multiplication tables chart. Make your own flashcards. Write them Have a family member test you.	Online activities:
Multiplicative Master. Students need to describe a method for finding a solution that requires multiplicative thinking, that is they use repeated addition or multiplication facts.	Ideas: Make up questions like the example above for the student to work out. Ask the student how they got their answer and what strategy they used. Encourage them to use multiplicative thinking which is repeated addition is.	$\underline{\text { Activity 2 }}:$ $\underline{\underline{\text { Activity 3 }}}$ $\underline{\text { Activitity } 1}$

Pink belt

Multiplication Tables Master. Recite 7, 8 and 9 multiplication tables.	Ideas: Recite the multiplication tables/ Print or make a multiplication chart.	Online activities: Activity 1 Activity 2: Activity 3				
Counting Master. Counting by 7's to 70,8 's to 80 and 9's to 90. Example: 7, 14, 21, 28 ... 70 $8,16,24,32 \ldots 80$ 9, 18, 27, 36... 90	Ideas: Practice reciting the multiplication tables. Write the number pattern down. Place an object over one or two numbers and the student has to count and discover what the covered numbers are.	Online activities: Activity 1 Activity 2: Activity 3				
Fraction Order Master. Students need to position fractions in order on a numberline between 0 and 1 . Example: 99/100 3/4 8/9 75/100 「1\|	i				Ideas: Write fractions on cards. Jumble them up and get students to rearrange them in order on a number line from 0-1.	Online activities: Activity 1 Activity 2 Activity 3
Decimal Order Master. Order decimals to thousandths on a number line. Example: 0.4 0.302 0.14 0.1 0.089 0.03	Ideas: Write decimals up to thousandths onto 7 cards. Jumble them up and get students to rearrange them in order from smallest to largest. Jumble again and reverse the order, from largest to smallest.	Online activities: Activity 1 Activity 2: Activity 3				
Mental Computation Master. Solving addition, subtraction and multiplication problems mentally. Example:	Ideas: Ask questions when possible. Remind students to use the things they already know, such as doubles, tens mates, renaming to assist them	Online activities: Activity 1 Activity 2				

$\begin{aligned} & 78-39 \\ & 13 \times 6 \\ & \text { Half of } 68 \\ & 200 \text { divided by } 40 \end{aligned}$		
Renaming Master. Knowing that 9.32 is made of: 9 ones 3 tenths 2 hundredths OR 93 tenths and 2 hundredths	Ideas: Ask students similar questions to the examples above. Use a hundredths chart to help.	Online activities: Activity 1 Activity 2 Activity 3
Multiplicative Master. Students need to describe a method for finding a solution that requires multiplicative thinking, that is they use repeated addition or multiplication facts.	Ideas: Get students to show their working out to multiplication questions. It will involve them breaking the problem into steps. Using strategies which involve multiplication/division. Example: $\begin{aligned} & 27 \times 4=108 \text { legs } \\ & 27 \times 2=54 \text { legs } \end{aligned}$	Online activities: Activity 1 Activity 2

Aqua Belt

Division Master. Divide numbers into the thousands by 1 and 2 digit numbers.	Ideas: Roll a dice four times to create a thousands number. Roll the dice once or twice to create a one or two digit number to divide by. Use multiplication strategies to help solve.	Online activities: Activity 1 Activity 2
BODMAS Master. Solve equations using the BODMAS order of operations. Brackets Of Division Multiplication Addition Subtraction	Ideas: Write different operations and a range of numbers on cards. You can also create some cards with brackets (parentheses) on them, or add these in yourself in the equation. Arrange them into an equation and solve. Example: $2 \times 5-3 \times 9=$	Online activities: Activity 1 Activity 2: Activity 3
Problem Solving Master. Solve problems using addition, subtraction, multiplication and division.	Ideas: Create worded problems to use the CUBES strategy to help you solve. Example: Victoria walked 5 blocks from her house to the bus stop. She rode the bus 7 blocks to the library. She came home the same way. How far did she travel altogether? Circle the numbers Underline the question Box the important words (maths word) Eliminate unnecessary information Solve and check!	Online activities: Activity 1 Activity 2 Activity 3
Conversion Master.	Ideas:	Online activities:

Convert percentages/ decimals/ fractions	Create a board game to convert between percentages/decimals and fractions. Example: If you land on a space with a fraction, you have to convert it to a decimal and a percentage. If you land on a space with a percentage, you have to convert it to a fraction and a decimal etc.	$\underline{\underline{\text { Activity } 3}}$
Fraction Master. Add and subtract fractions using like denominators	Ideas: Practice writing different fractions on cards with like denominators (same number on the bottom). Select two fraction cards and add/subtract them.	$\underline{\underline{\text { Activity } 1}}$
	Example: $3 / 7+2 / 7=5 / 7$ $3 / 7-2 / 7=1 / 7$ $8 / 12+3 / 12=11 / 12$	$\underline{\text { Activity } 3}$
$8 / 12-3 / 12=5 / 12$		

Red Belt

duration of events using everyday language of time.	Brainstorm events that take different times to complete. Eg: Longer than an hour, less than a minute, 1 day etc.	
Hour Master Tells the time to the hour	Ideas: Students need to tell the time to the hour by reading analogue and digital clocks.	Online activities: Activity 1 Activity 2
Half an Hour Master Tells the time to the half hour	Ideas: Students need to tell the time to the half an hour by reading analogue and digital clocks.	Online activities: Activity 1 Activity 2
Quarter Master Tells the time to the quarter past and quarter to	Ideas: Students need to tell the time to the quarter-hour, using language 'past' and 'to'.	Online activities: Activity 1 Activity 2
Minute Master Tells the time to the minute	Ideas: Students need to tell the time to the minute on using both digital and analogue.	Online activities: Activity 1 Activity 2
Conversion Master Convert units of time.	Ideas: Practise converting a range of different times E.g. Seconds to minutes Minutes to hours Hours to minutes etc	Online activities: Activity 1 Activity 2
AM/PM Master Understands units of time in AM and PM notation.	Ideas: Students need to demonstrate they understand 24 hr and 12 hr systems of time. Students must answer AM or PM for the list of questions. Convert from 12 hr to 24 hr and vice versa.	Online activities: Activity 1 Activity 2
Timetable Master Can interpret timetables	Ideas: Use a bus/train timetable and ask relevant questions.	Online activities: Activity 1
Elapsed Time Master Calculate and compare elapsed times	Ideas: Students need to calculate elapsed time and then order the events from longest to shortest. E.g. Maths Lesson: 11:15pm to $12: 45 \mathrm{pm}=$	Online activities: Activity 1 Activity 2

Blue Belt

Coins and Notes Master Students need to be able to recognise and name coins and notes.	Ideas: Test the students with coins and notes from around the house.	Online activities: $\frac{\text { Activity 1 }}{}$ $\frac{\text { Activity 2 }}{}$

Value Order Master Students need to be able to order coins and notes into value order from smallest to largest.	Ideas: Explain why certain coins and notes are worth more. Discuss the importance of knowing the value of coins and notes. Using coins and notes (real or pretend) get students or order them from smallest to largest value and vice versa.	Online activities: Activity 1 Activity 2 Activity 3
Counting Master Students add coins that they are given together and come up with the correct value.	Ideas: Ask your child to count the spare change in your wallet/purse. Using spare change choose random coins to put under a blank sheet of paper. shade over the coins with a crayon or pencil then add up the coins. repeat.	Online activities: Activity 1 Activity 2 Activity 3
Total Master Students should demonstrate they can use three different collections of coins and notes to add up to the same value.	Ideas: Explicitly show the students all the Australian coins and notes. make sure the students have an understanding of how much each coin/note is worth. Place coins and note in front of the students and allow them to add them up to get a total amount. Give students a range of different values.	Online activities: Activity 1 Activity 2
Change Master Students must demonstrate that they can count the change required for simple transactions to the nearest five cents.	Ideas: Explicitly show the students how to subtract the amount spent from the amount of money given, to work out how much change. Discuss the importance of calculating how much change you will receive when spending. Practice calculating change while at the supermarkets.	Online activities: $\frac{\text { Activity } 1}{\text { Activity } 2}$ Activity 3
Financial Plan Master Students should demonstrate that they can understand simple financial plans.	Ideas: Use catalogs (food and retail) and give your child a fake budget to see what they would buy. Get your child to work out what they would buy, how much it would cost all up and how much change they would get from their purchases.	Online activities: Activity 1 Activity 2
Percentage Master Students need to be able to work out and calculate percentage discounts of $10 \%, 25 \%$ and 50% on sale items, with and without digital technologies. Students need to be able to work out what the new price will be after the percentage off.	Ideas: Explicitly show the students the strategies to work out a percentage.There is a website below that provides the algorithm for assistance. Using a catalog, students can work out the sale prices and how much is discounted.	Online activities: Activity 1 Activity 2 Activity 3

