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Type 2 diabetes mellitus (T2DM) causes peripheral vascular disease because of

which several blood-borne factors, including vital nutrients fail to reach the

affected tissue. Tissue epigenome is sensitive to chronic hyperglycemia and is

known to cause pathogenesis of micro- and macrovascular complications.

These vascular complications of T2DM may perpetuate the onset of organ

dysfunction. The burden of diabetes is primarily because of a wide range of

complications of which nonhealing diabetic ulcers represent a major

component. Thus, it is imperative that current research help recognize more

effective methods for the diagnosis and management of early vascular injuries.

This review addresses the significance of epigenetic processes such as DNA

methylation and histone modifications in the evolution of macrovascular and

microvascular complications of T2DM.

KEYWORDS
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Introduction

Ubiquitous across the human body, the vascular organ system comprises the arterial,

venous, and lymphatic vessels that perfuse the rest of the living organism. However, due

to its widespread location, the vasculature is highly susceptible to injury. At the cellular

level, the surrounding environment through which vascular structures seed is integral

toward maintaining continuous blood supply. Even the slightest alteration to the extra-

vascular space can cause a cascade of pathological consequences from ischemia to

neuropathy. Vasculopathy is a broad, all-encompassing term used to describe vascular

abnormalities ranging from metabolic derangements to embolic/thrombophilic and
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functional disorders (1). This term is confused with ‘Vasculitis’

which refers to a more specific inflammatory process dealing

with the arterial and venous walls (2). Vasculitis commonly has

skin manifestations and is more closely tied to clinical

syndromes. Although both terms are used in the nomenclature

of vascular pathology, they differ in terms of vessel size and

location, and status of inflammation. The nomenclature is

largely nonspecific but denotes the vast domain of pathology

that can affect the vasculature. For this review, the term

vasculopathy will be used to encompass all vasculature-

related pathology.

The global impact of vasculopathy cannot be understated (3).

Nearly every chronic disease creates derangements in the

extracellular space which impacts vascular health. The

development of vasculopathy is widespread and represents a large

loss of life-years across the world (3). When referring to clinical

vasculopathy, diseases such as Kawasaki Disease, Takayasu’s

Arteritis, and Giant Cell Arteritis account for the most common

cause of acquired cardiac disease in children, elderly Japanese and

elderly Europeans, respectively (4). On the venous end of the gamut,

chronic venous disease accounts for nearly 2% of the healthcare

allocation in western countries (5). More so in the sickest patients

such as those immunocompromised or post-transplantation,

vasculopathy is the leading cause of transplanted graft loss at a

one-year time mark (6). Infectious agents such as Varicella Zoster

are also major vascular modifiers and before the advent of the

vaccine, 95% of young individuals were infected (7–9).

In the multitude of types of vascular diseases, including the

aforementioned vascular diseases, the most prevalent vascular

disease in terms of health impact is type 2 Diabetes Mellitus

(T2DM)-associated microvasculopathy and macrovasculopathy. It

is one of the leading causes of mortality and morbidity in the US

with nearly 50% of individuals dying from some form of

cardiovascular disease (10). The vascular complications for

diabetes span the length of the body similarly remain the number

one cause of mortality (11). With the ever-enlarging breadth of

literature associated with vasculopathy, there is a clear and present

need for a comprehensive understanding of the causes, effects, and

potential mechanisms for the development of vascular disease

processes. Recent literature (12–24) demonstrates a key role for

epigenetic mechanisms such as DNA methylation and histone

modification from long standing hyperglycemia in the complex

interplay between genes and the environment in diabetic tissue.

Promoter DNA methylation induced gene silencing is the most

extensive epigenetic modification reported in diabetic vasculopathy

(22, 25–28). Such hyperglycemia-induced gene promoter

hypermethylation is long known to contribute to a “metabolic

memory” that results in vascular dysfunction in diabetes even after

achieving glycemic control (15, 23, 29). However, this view has been

modified substantially to include small non-coding RNAs or

microRNAs (miRNAs) and large intergenic non-coding RNAs as

additional epigenetic components (23). In this review, the epigenetic
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mechanisms associated with pathogenesis of diabetic vasculopathy

will be discussed.
Vascular physiology and pathology

The Vascular system is the organ system comprising of

blood vessels connecting the heart to other organs and tissues

throughout the body. The blood vessels are thematically split

into an arterial side (30) which supplies tissue with oxygenated

blood from the heart and a venous side which returns

unoxygenated blood to the heart for pulmonary oxygenation.

The third group of vessels includes lymphatics and capillaries

which manage lymph fluid and extracellular fluid. However, for

the point of this review, the focus will be given to arterial and

venous vasculature with a primary emphasis on the arteries.
Pathophysiology of the vascular system

The structure of veins and arteries is a scale of millimeters

and smaller. Thus, under circumstances of injury or pathology,

there are systemic derangements in the vessels that can occur

across the body simultaneously affecting these structures. The

breadth of pathophysiology in vascular disease is impressive.

Broadly, it can be broken down into aneurysmal disease and

occlusive disease (31). The aneurysmal disease is a classification

for the development of aneurysms or pathological enlargement

of a vessel. This enlargement can affect any vessel but the most

notable are aortic aneurysms which carry a high mortality.

Underlying the enlargement, however, is a molecular process

causing the weakening of the arterial wall. Likewise, the occlusive

disease can be broadly attributed to atherosclerotic processes

and the development of plaque burden in these vessels. This

plaque can then not only alter the blood flow dynamics but can

even become entirely occlusive and prevent distal perfusion.

Once again there is a complex molecular cascade underpinning

the development of atherosclerosis.
Vasculopathy and vasculitides

Another description of vascular pathology can be termed

vasculopathy. While the difference is largely linguistic, it is

important to differentiate between these two owing to the

difference in clinical implications. Vascular pathology is often

referred to as “vasculopathy” which is more appropriate for the

occlusive and aneurysmal diseases referred to earlier, vasculitis is

important for their existing clinical syndromes. Broadly

speaking, the definition of vasculitides is the infiltration of

inflammatory cells into the vessel wall causing loss of

structural integrity. Furthermore, the 2012 International
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Chapel Hill Consensus Conference organizes vasculitides based

on vessel size, organ dysfunction, and known etiology (32, 33).

The most common and studied vasculitides are outlined in

Table 1. These conditions are more symptomatically outlined

and clinically correlated than the term vasculopathy. In nearly all

cases of vascular pathology ranging from vasculitides to

atherosclerosis, the role of the endothelial layer has been

heavily implicated (34).
Endothelium and endothelial
dysfunction

The endothelium layer is a thin layer of cells [named

Endothelial Cells (ECs)] lining the innermost layer of the

vessel lumen. Initially thought as nothing more than a

selectively permeable membrane for nutrient transfer, the role

of the endothelium has largely expanded to nearly every aspect

of cardiovascular physiology (34). Previous research delineated

the role of ECs in angiogenesis, homeostasis, and immune

response (35). These cells commonly line the inner layer of

vascular organs and act as the direct contact with potential

vascular derangements. In this role, they can control vascular

tone, leukocyte adhesion, and the tight regulation between pro-

and anti-coagulative environments (36). Originally described as

a monolayer along with basal lamina cells, ECs have always been

implicated in a diverse role operating as much more than a

simple inert barrier (36). New literature has shown that this

endocrine organ has affector and effector properties allowing for

maintenance of homeostasis across the body (37). More so, the

homeostatic mechanisms can further be divided into

mechanisms of (i) Coagulation and Thrombolysis, (ii)

Leukocyte Interactions, and (iii) Vasoconstrictor/Vasodilator

Regulation (37). Importantly, endothelial cells are under the

most immediate effect of any alterations to flow dynamics,

viscosity, or plaque formation. Thus, any dysfunction in these

tightly controlled mechanisms can cause devastating

downstream effects across the entire vasculature. Any shift
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away from the abovementioned role of ECs is largely defined

as an instance of endothelial dysfunction. Reduced vasodilation,

increased inflammatory markers, and creation of prothrombotic

conditions are the hallmark of a dysfunctional endothelial layer

(34). In the most severe form, this dysfunction can be lethal

resulting in coronary events, kidney failure, diabetes, and

formation of free radicals. The cause of endothelial

dysfunction is multifactorial and has been attributed to

diabetes, smoking, hypertension, and general inactivity (38).

Diabetes creates a multifactorial pathology that causes

endothelial dysfunction over the course of decades.
Diabetes and vasculopathy

Impact

According to the National Diabetes Statistics Report of 2020,

30 million people over the age of 18 live with T2DM, and

another 68 million live with the ascribed diagnosis of

‘prediabetes’. However, more than the current incidence, the

rising prevalence of the disease is most worrisome. Growing

exponentially in younger populations, diabetes is becoming one

of the largest losses of life-years in the modern healthcare

system. T2DM itself is characterized by derangements in

insulin responsiveness and glycemic control. This creates an

environment of chronic inflammation and radical oxidization

that harms small and large neurovascular bundles which is

referred to as diabetic vasculopathy. More so there is an

element of atherosclerotic burden that causes increases in

plaque development in the lumens of arteries. This same

process occurs in coronary vessels and makes coronary artery

disease a dominant cause of mortality among diabetics (39). In

the peripheral vessels this disease process is referred to as

Peripheral Arterial Disease (PAD) and costs over 200 billion

USD (40, 41). The most frequent and morbid outcome of PAD is

amputation. At 5 years, nearly 50% of amputees die (40, 42).
TABLE 1 Vasculitides Organized based on Vessel Size as well as syndromic presentations. Information drawn from 2012 International Chapel Hill
Consensus Conference13,14..

Large Vessel
Vasculitis

Medium Vessel
Vasculitis

Small Vessel Vasculitis Variable Vessel Vasculitis Vasculitis Associated with Systemic Diseases

Takayasu Arteritis Polyarteritis
Nodosa

ANCA Associated Vasculitis
Microscopic Polyangiitis
Wegener Granulomatosis
Churg-Strauss Syndrome

Behcet’s Disease Lupus

Giant Cell
Arteritis

Kawasaki Disease Immune Complex Vasculitis
Anti-GMB Disease

Cryoglobulinemia Vasculitis
IgA Vasculitis

Anti-C1q Vasculitis

Cogan Syndrome Rheumatoid Arthritis

Sarcoid Vasculitis
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Diabetic Vasculopathy is an encompassing term used to

describe vascular complications associated with systemic

hyperglycemia and hypertension seen in diabetes. The

hallmarks of diabetic vasculopathy include injury to large

vessels such as the aorta and coronary vessels as well as more

peripheral injuries such as retinopathy and nephropathy.

Coronary vessels susceptible to plaque burden have a much

different pathophysiologic profile than small retinal vessels. The

environment created by uncontrolled hyperglycemia affects

vessels differently depending on their size. Thus, a dichotomy

exists where we can explore the effects of diabetes on large vessels

(macrovasculopathy) and small vessels (microvasculoapthy).
Etiology of diabetic vasculopathy

The large impact of diabetic vasculopathy, creates a need to

understand the molecular mechanisms of the disease process.

Early proposed etiologies of this vasculopathy stem from the

treatment of different pharmaceutical therapies and then

retroactively applying a cause. For example, the Renin-

Angiotensin-Aldosterone System has been implicated in this

process due to the beneficial effect of ACE Inhibitors and AT1

receptor antagonists (11). Similarly, the treatment of

vasculopathy with endothelin inhibitors implicated the role of

hyperplasia as a cause of vasculopathy. These inhibitors have

been shown by Marano et al., to decrease luminal hyperplasia in

carotid arteries (43). However, a true elucidation of the

mechanisms requires a full investigation.

The literature on the mechanisms for diabetic vasculopathy

is divided into two types: physical and molecular with the former

slowly accumulating over years. Metabolic factors in conjunction

with altered hemodynamic flow cause the abnormal release of

cytokines and vascular factors (44). Cytokines such as

prosclerotic cytokine transforming factor B (TGFb) are

overexpressed in glomeruli and kidneys seen in diabetic

nephropathy (45). Likewise, growth factors such as vascular

endothelial growth factor (VEGF) and its receptor VEGFR2

were found in increased in the retina (11). The downstream

effects of this process cause alterations in blood flow and

abnormal remodeling and plaque development causing the

most physical changes associated with vasculopathy such as

extracellular matrix accumulation and atherosclerosis.

Peripheral tissues rely on much smaller caliber vessels for

perfusion. Thus, any change to the diameter of the lumen can

drastically change the physiologic profile of the organ in

question. For example, the afferent glomeruli vessels can lose

vascular tone due to cytokines and inflammatory markers

causing increased perfusion throughout the nephron.

Downstream this can destroy the glomerular basement

membrane and cause podocyte effacement and albuminuria.

Alongside this loss of filter, is the expansion of the

extracellular matrix from profibrotic signals causing
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tubulointerstitial fibrosis (46, 47). Together this creates the

clinical picture of diabetic nephropathy. Likewise, in retinal

tissue increased reactive oxygen species and loss of signaling

from platelet-derived growth factor (PDGF) cause increased

angiogenic factors like Tie 2 causing vascular proliferation and

the prototypical proliferative diabetic retinopathy (46, 47). The

three major aspects of diabetic vasculopathy are large vessel

atherosclerosis, nephropathy, and retinopathy (46).

As mentioned earlier, the mechanisms for both large and

small vessel deterioration are exacerbated by the hyperglycemic

environment created by diabetes. Specifically, there are three

states that persistent hyperglycemia can cause. Hyperglycemia is

being used as the hallmark of uncontrolled insulin resistant/

exhausted T2DM (48, 49). Advanced glycation results from the

excess sugar present in the blood stream causing sugar to be

added to molecules such as lipids or proteins creating advanced

glycation end products (AGEs) (50). These AGEs can cause

downstream complications where they create cross-links in the

basement membrane and downstream cascades resulting in

increased reactive oxygen species (50). Together, these may

result in impaired vessel permeability and vasculopathy

(Figure 1). The second metabolic derangement of diabetes is

the activation of the Protein Kinase C pathway (PKC) (50). This

chemical cascade primarily regulates vascular smooth muscle

contractility. In diabetes, the AGEs and reactive oxygen species

mentioned earlier prematurely activate the PKC pathway
FIGURE 1

Major biochemical and cellular pathways underlying endothelial
dysfunction leading to vascular complications associated with
T2DM. Chronic hyperglycemia activates different pathways
involved in leading to endothelial dysfunction in T2DM subjects
result in decreased activity of eNOS and increased mitochondrial
ROS overproduction. This will bring up a pro-inflammatory
environment by activation of several mediators which alter the
endothelial epigenome and followed by aberrant transcription of
genes regulating inflammatory response, macrophage
infiltration, apoptosis and fibrosis resulting in diabetic vascular
complications. Reproduced with permission from Elsevier.
Following original report was credited: Dhawan et al. (51).
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causing vasodilator dysfunction and downstream vasculopathy

of both large and small vessels (52). Lastly, the Sorbitol

accumulation in the Polyol pathway is the third metabolic

derangement of diabetes that can contribute to vasculopathy

(52). The polyol pathway is a two-step pathway converting

glucose into fructose. An intermediate in this path is sorbitol

which is unique because it cannot pass the cell membrane and

remains extracellularly creating osmotic stress. In conditions of

diabetes such as under excess glucose, more and more sorbitol

accumulates causing increased osmotic gradients and oxidative

damage to vessels (53). All in all, the elucidated mechanisms are

heavily researched and make up the current dogma of diabetes as

it relates to vascular dysfunction. However, it is noted that these

mechanisms are all chemical cascades of known molecular

pathways. There is a lack of a comprehensive review of the

models that dictate these mechanisms at an extra-genomic level.
Diabetic vasculopathy and
peripheral neuropathy

Peripheral neuropathy is an encompassing term used to

define peripheral nervous system injuries like numbness,

tingling, burning, and pain (54). The pathophysiology of the

development of peripheral neuropathy is complex and there are

many, overlapping etiologies ranging from systemic

autoimmune disorders to physical compression (54). However,

one of the most common causes of peripheral neuropathy is

diabetes accounting for over 50% of the cases (55). This

incidence is so high that the World Health Organization has

even coined the phrase diabetic peripheral neuropathy (DPN) to

account for the large amount of comorbidity (55). The most

prominent damages to the nerves in diabetic patients suffering

from DPN includes nerve fiber damage, axonal loss, and

endoneurial microangiopathy (56, 57). Based on these

findings, research from Malik et al. showed a positive

correlation between symptoms of clinical neuropathy and

microvessel changes (58). This correlation was further

investigated by Yagihashi et al. (2010) who showed that the

hyperglycemic environment of diabetes did cause

microangiopathic damage and downstream neuropathic

symptoms (59). Their research showed that hyperglycemia

caused derangements in the polyol flux causing a

hyperosmolarity of sorbitol in the cytoplasm of neurons and

eventual lysis (60, 61).

Additionally, the role of glycated end products such as AGEs

in the pathophysiology of DPN has come under investigation.

AGE metabolites are highly accumulated in the arteries of

diabetic patients (62). However, these end products were also

found to be present in the axoplasm and Schwann cells exerting

an injurious process on peripheral nerves. Additional signaling

pathways such as the Protein Kinase C (PKC) Pathway are also

inappropriately activated during diabetic vasculopathy
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(Figure 1). Most notably the PKC pathway has been heavily

implicated in the control of nerve function (63). Lastly, oxidative

stress and pro-inflammatory states caused by diabetic

vasculopathy (from chronic hyperglycemia) increase cellular

senescence and enhance the development of DPN (64).

Oxidative stress created free radicals which have been shown

to decrease nerve conduction velocities (65). Thus, diabetic

vasculopathy is a prime causative agent in the development of

neuropathic symptoms. The multifaceted etiology mentioned

above means that damage to vascular structures during

conditions of hyperglycemia does not occur in isolation.

Surrounding nerves and axons are also susceptible to diabetic

derangements. The investigation into diabetic vasculopathy also

yields important information about the role that vascular injury

plays in the development of DPN. In this review, we will further

explore the epigenetic components that create vascular

dysfunction in conditions of diabetes.
Epigenetics and diabetic
vasculopathy

Epigenetic modification is a broad-encompassing term that

denotes changes in gene transcription that are not due to

changes in DNA sequence (66). These modifications mostly

regulate the nucleosomal arrangement around DNA and control

the gene activation or inactivation. The five prototypical

examples to be discussed in this article include 1) DNA

methylation, 2) Histone modifications, 3) Chromatin

Remodeling 4) microRNAs and 5) long non-coding RNAs (67,

68) [Figure 2, reviewed in Singh et al., 2020 (24)]. These different

situations point to a unique aspect of genomic regulation in that

external factors, outside the domain of DNA sequences, can

regulate complex disease processes (69–72). T2DM has a very

complex inheritance pattern with an intricate intersection

between genetics and environmental factors. This interplay

mimics the function of epigenetic modification and heavily

implicates a strong epigenetic role in the development of

diabetes and diabetic vasculopathy (51, 73) (Figure 3).
Epigenetic mechanisms of
diabetic vasculopathy

Under the paradigm of vascular dysfunction mentioned

earlier, we can further explore the specific epigenetic

modifications that occur in diabetic vasculopathy and how it

fits into the micro/macroangiopathic picture. The current

literature is diverse as it relates to diabetic vasculopathy. A

large all-encompassing study by Chen et al., 2016 (74)

examined the role that poor glycemic control has in diabetic

microvascular complications. Using the DCCT Trail [Diabetes
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Control and Complication Trial (1983-1993)] researchers

showed that microvascular changes between a strict glycemic

group and a control group were significant (75). The control

group without glycemic regulation showed increased signs of the

angiopathic complications mentioned earlier (retinopathy,

nephropathy). Interestingly, sites of DNA methylation were

different between the control and glucose-restricted group

(76). This study set the stage for the role of epigenetics in

diabetes and confirmed the previous studies implicating

uncontrolled hyperglycemia in the role of vascular derangement.

Nakatochi and researchers found that in the field of

myocardial infarction, of which diabetes is over 40%

comorbid) there are three unique sites (77). These unique sites

along the DNA were found to have hallmarks of DNA

methylation (24, 78, 79). More so correlative analysis among

Japanese men showed that DNA methylation at these sites was

not only predictive of myocardial infarction but also predictive

independent of BMI and lipid levels. This points to the

independent regulation of large vessel disease via epigenetics.

Going further, Bell et al., 2010 (80) found 19 CpG sites with

correlations to diabetic nephropathy when compared to the
Frontiers in Endocrinology 06
control among 192 Irish patients. Already we see epigenetic

regulation at both a macrovascular level as reported by

Nakatochi et al., 2017 (77) and at a microvascular level as

reported by Bell et al., 2012 (81) across diverse demographic

groups and appropriately matched by age and comorbidities.

The field of diabetic retinopathy falls under microvascular

complications of diabetes but is more complex due to the heavy

collateralization of the retina. Researchers including Berdasco

2017 examined exudative and ischemic damage to retinal vessels

(82). Both changes are consistent with the chronic issue of

diabetic retinopathy and the development of blindness in

uncontrolled diabetes through pro-angiogenic factors (83, 84).

In a three-step model, researchers found proliferative

retinopathy consistent with exudative and ischemic damage

had 46 genes marked by CpG island methylation (85). More

so the entire MAP3K1 pathway, which is beyond the scope of

this article, was found to be hypomethylated near the promotor.

Hypomethylation of regulatory genes is consistent with the

dogma of increased gene expression. Increased gene expression

of this pathway correlates with increased proliferative

retinopathy. More so, Argadh et al., 2015 (85) investigated the

comprehensive DNA genome implicated in the disease. The

group examined DNA methylation rates at over 300 CpG sites.

The findings were consistent not only with an increased level of

methylation rates among those with diabetic retinopathy, but the

rate of methylation went so far as to work as a predictive

algorithm for the severity of the retinopathy.
FIGURE 3

High glucose induces epigenetic reprogramming in endothelial
cells and influences genes that are associated with its (dys)
functions. DNA methylation and demethylation, histone
modifications, miRNAs and lncRNAs regulate the activity of
various genes related to angiogenesis and stimulate
pathophysiological pathways leading to an inflammatory
response and subsequently to vascular complications.
Reproduced with permission from Elsevier. Following original
report was credited: Dhawan et al. (51).
FIGURE 2

Schematic diagram shows the role of hyperglycemia induced
epigenetic mechanisms in metabolic memory and diabetic
endothelial dysfunction. DNMTs, DNA methyltransferases; HMTs,
histone methyltransferases; HATs, histone acetyltransferases;
eNOS, endothelial nitric oxide synthase; NO, nitric
oxide, AGE, advanced glycation end products; PKC, protein
kinase; NF-kB, nuclear factor-kB.
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Only limited studies have examined the role of histone

modification and chromatin remodeling in the pathogenesis of

diabetes and vascular diseases. Under hyperglycemia, pancreatic

islet-specific transcription factor Pdx1 recruits co-activators

p300 and the histone methyltransferases (HMTs) SET7/9 to

increase histone acetylation and H3K4me2 (23). Such

recruitment results in the formation of open chromatin at the

insulin promoter and stimulation of insulin production. On the

other hand, under low glucose conditions, the same

transcription factor, Pdx1, could recruit co-repressors

HDAC1/2, leading to inhibition of insulin gene expression

(23). Persistent inflammation in diabetic tissue, elevates

inflammatory gene expression in endothelial cells through an

increase in histone lysine acetylation (86, 87). For example,

H3K9/14Ac and histone acetyltransferase (HATs) CBP/p300,

play key roles in inflammatory gene expression in diabetic tissue

(88). Taken together, these findings suggest that diabetic stimuli

can trigger changes in the promoter methylation and chromatin

structure that can have long-lasting effects on the expression of

target genes.
Epigenetic basis of non-healing
diabetic wounds

One area of chronic complications from T2DM that falls

outside of the domain of vasculopathy is the associated ulcers

caused by vasculopathy. While not a direct vessel injury, non-

healing diabetic ulcers are a direct result of the ischemia associated

with arterial insufficiency and decreased perfusion. In particular, the

cutaneous mechanism of wound healing in response to injury is

unbalanced due to diabetic oxidative stresses and abnormal gene-

environment interaction (89–97). ECs dysfunction and

accumulation of glycosylated products as described earlier cause

damage to the step-wise process of scar formation and healing (68).

Several epigenetic mechanisms, particularly DNA methylation and

histone modifications have been observed during cutaneous wound

healing process (98). Specific examples include the reduction of

trimethylation of H3K27 (H3K27me3) in the murine dermal

wounds. This was associated with increased expression of

H3K27‐specific lysine demethylases Jmjd3 and Utx. In addition

to this, components of the polycomb repressive complex 2 (PRC2):

Eed, Ezh2 and Suz12, which methylate H3K27, were found to be

downregulated during murine wound healing (99). Another gene

that remains in tight epigenetic control is eNOS. In physiologic

conditions, endothelial cells show constant activation of eNOS via a

largely hypomethylated promotor region along symmetric strands

and across CpG dinucleotides. More so, research from Yan et al.,

2010 indicates that the chromatin structure of eNOS is also different

among endothelial cells versus nonendothelial cells. In particular, a

histone deacetylase (HDAC) inhibitor has even been shown to

upregulate eNOS levels (100). Thus, the dysregulation seen in
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diabetic wounds of the levels of eNOS shows a direct pathway to

the role that epigenetic regulation will have in wound healing.

The role of macrophages also comes into question as the

dysfunction seen in nonhealing wounds directly relates to the

level of a gene called Monocyte Chemoattractant Protein-1

(MCP-1). In streptozotocin-induced diabetic macrophages, the

MCP-1 gene was shown to be increased compared to control

mice. This increased expression was in direct epigenetic control

via the MCP-1 promoter region by monomethylation (68).

Chromatin remodeling is one of the important epigenetic

modifications involved in regulating the transcription of

inflammation-associated genes that affect macrophage

polarization and other properties essential for successful wound

healing (101). Specifically, HAT and histone deacetylase (HDAC)

activate inflammatory monocyte differentiation and macrophage

phenotype. Alteration of macrophage-related genes by histone

modification enzymes correlated with impaired wound healing

(102). Further, the ATP-dependent chromatin remodeling (SWI-

SNF) complex plays a role in macrophage development. The SWI-

SNF interacts with HDAC1 to regulate histone acetyltransferase

(H3K27ac) and regulate genes which is important for cell

development and differentiation (103).
Non-coding RNA-based therapeutics in
diabetic wound healing

MicroRNAs are short single-stranded which instead of being

translated into proteins, bind strongly to mRNA affecting gene

expression. The therapeutic potential of miRNAs is worth

exploring as: i) a single miRNA can act as an amplifier by

regulating multiple functionally convergent target genes, ii)

miRNAs are stable small biomolecules that can be

manipulated with emerging techniques, and iii) they can be

delivered precisely in a controlled manner. The therapeutic

efficacy can be achieved either by over-expression of specific

miRNA or by silencing it. The delivery of potentially therapeutic

biomolecules is achieved using viral or non-viral methods for

gene therapy using emerging nanotechnology-based approaches

(104). Studies have shown deregulation of miRNAs functions is

associated with diabetes pathogenesis and complications

(Figure 4) (105). For example, endothelial cells have been

shown to have a specific upregulated miRNA in severe

hyperglycemia and an analogous upregulation in the plasma

derived from diabetic foot ulcers (105, 106). A further 14

miRNAs were found to have a variable expression in diabetic

conditions compared to control mice according to Madhyastha

et al., 2011 (107). Specifically, it was found that during diabetic

wound healing miR-146b was upregulated nearly 30 times (107).

MiR-21 on the other hand was reduced during diabetic wound

healing (107). Li et al., 2009 found that treatment with a miR-

221 inhibitor lowered levels of miR-221 and improved cell

migration under hyperglycemic conditions (108).
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MiR-200b has long been implicated in the role of diabetic

vasculopathy. Previous literature had shown that miR-200b had

a regulatory role in the angiogenesis of diabetic wounds (109).

However, there was the question of the regulatory role of

miRNA in hyperglycemia. We explored the role that

hyperglycemia has on the promotor of miR-200b via

epigenetic modifications (18). We found that there was

noticeable hypomethylation of the promotor region of miR-

200b seen in diabetic wound-site endothelial cells in severe

hyperglycemia. This work showed the first evidence of the

hypomethylation status of miR-200b (18). More so this fact is

confirmed by a methyl donor S-adenosyl-L-methionine rescued

endothelial function by re-methylating promotor regions.

Therefore, manipulation of the expression of specific miRNAs

may be an effective therapeutic approach to overcoming

diabetes-associated complications (110). The overexpression

and downregulation of specific genes regulates wound biology

which is chiefly regulated by miRNAs. Unraveling the process of

dysregulated miRNAs in skin wound healing will help in

developing new targeted therapies. OxymiRs are miRNAs

working in response to tissue oxygenation state (111). A wide

range of oxymiRs has been studied which are differentially

expressed during wound healing (112). Hypoxia-sensitive

miRNAs are termed “HypoxymiRs” (113). Chronic non-

healing wounds like diabetic foot ulcers, venous ulcers, and

pressure ulcers are characterized by ischemia/hypoxia (112). In

this regard, miR-203 miR-210 and miR-21 are well-explored
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hypoxymiRs actively involved in wound healing (114). Similarly,

miRNAs play a very crucial role in inflammation control during

the healing of the wound (112). miR-155, miR-146a, and miR-

132 are some of the miRNAs explored in relation to wound and

inflammation (115). For example, miR-155 regulates the

expression of proteins involved in the immune response

against pathogens which has clinical significance in chronically

infected wounds (116). It is also involved in regulating TNFa
through other signaling mediators (117, 118). miR-125b (119),

miR-31, miR-17-3p (120) and miR-124a (121) are other

miRNAs involved in inflammation regulation in wound

healing. miRNAs also play a pivotal role in maintaining

barrier function during re-epithelialization of skin wounds

(112, 122). miR-210-dependent pathways impair ischemic

wound re-epithelialization (123). Also, overexpression of miR-

1 in skin keratinocytes impairs cell migration ultimately affecting

re-epithelialization and skin barrier functions (124–126).

miRNAs have a very important role in angiogenic response

during wound healing through guiding vascularization (127,

128). An array of miRNAs is involved in the angiogenesis

process in different stages - proliferation, migration, and

morphogenesis of endothelial cells. A few examples of

miRNAs involved in angiogenesis also termed as angiomiRs,

include miR-15b, miR-16, miR-20, miR-21, miR-23a and others

(112, 129). The above miRNAs can be applied in clinical settings

by modulating their expression via gene therapy approach.

However, the existing challenge is the effectiveness and

specificity of delivery to relevant tissues/organs in an active

form (130). In an ideal condition, cellular uptake of the delivered

miRNA should be high and without endosomal escape (131).

Another limitation is that the approach of treatment targeting

one miRNA can have undesired off-target effects because of its

downstream effects on multiple genes.

Long non-coding RNAs (LncRNAs) are another set of non-

coding RNAs that play a significant role in vascular signaling.

LncRNA regulates gene expression by regulating chromatin

dynamics and transcriptional activities. LncRNAs are

prominently deregulated in diseases such as cardiovascular

disease, diabetes, and primary open-angle glaucoma (132–134).

For example, lncRNA ZEB-AS1 acts as a miR-200b sponge to

regulate cell migration, invasion, and proliferation (135).

However, these lncRNAs may also contribute to the

progression of T2DM disease or other related diabetes-related

complications (134). Growing evidence indicates that multiple

lncRNAs are involved in diabetic complications, and multiple

angiogenic miRNA‐lncRNA pairs relate to wound healing in the

maturation phase. During the wound healing process LncRNAs

GAS5, IGF2AS, MALAT1, ANRIL, H19, MIAT and

lncEGFL7OS are reported to regulate angiogenesis process

(136). Additionally, it has been reported that the increased

circulating lncRNAs NKILA, NEAT1, MALAT, and MIAT

expression in patients with T2DM may influence the degree
B

C
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FIGURE 4

Role of miRNAs in endothelial cell phenotype, functions and
vascular disease and their direct targets. MicroRNAs involved in:
(A) angiogenesis, (B) vascular inflammation and atherosclerotic
vascular disease, (C) vascular tone and endothelial cell barrier,
and (D) secreted microRNAs and biomarkers. Reproduced under
the terms of the Creative Commons CC BY license published by
Elsevier. The following original report is credited: Chamorro-
Jorganes et al. (105).
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and severity of disease among patients with T2DM (134).

Diabetic wound angiogenesis thus operates under closely

regulated epigenetic control.
Vascular tissue imaging modalities

A rise in the prevalence of diabetes worldwide predicates the

significance of incorporating non-invasive imaging modalities in

the management of diabetic vascular diseases. Non-invasive

imaging of vasculature continues to provide functional

parameters for monitoring pathophysiological complications in

diabetic patients. Ultrasonography (USG) is a useful imaging

modality available to characterize anatomical vasculopathy in

non-coronary arteries (137). The USG is also a valuable non-

invasive imaging method used to illustrate peripheral

vasculopathy contributing to the development of diabetic skin

ulcers (138). Furthermore, color Doppler US technology uses a

slightly different frequency that enables the measurement of

blood flow through blood vessels (18, 139, 140). Pulse wave

Doppler velocity measurement is useful in providing relatively

precise arterial size measurement which is the foundation for

identifying feeder vessels (18, 139, 140). Identifying differential

rates of blood flow in the tissue surrounding diabetic ulcers is

crucial to preventing further complications that could ultimately

lead to amputation (137). Other non-invasive 3D imaging

devices like thermography, macrophotography, laser speckle

perfusion mapping, and laser Doppler flowmetry modalities

are also clinically relevant to the management of vascular

diseases (141, 142).

Non-invasive imaging modalities also offer accessible tools

to monitor vascular tissue microcirculation in addition to

measuring blood flow perfusion as a pathological diagnostic

measurement of tissue vasculature. Computed Tomography

(CT) is an X-ray-based technique used for characterizing

changes in microvascular morphology. Magnetic resonance

imaging (MRI) is another method that has been used to

evaluate tissue vascular volume, microvascular flow, and

permeability of biomarkers for T1DM and T2DM in rodent

models (143). Additionally, Hyperspectral imaging has been

used to quantify tissue oxygenation in the application of

diabetic foot wound care (144). Evaluating a spatial map of

oxy- and deoxyhemoglobin in the tissue surrounding diabetic

foot ulcers can determine the burden of early medical

interventions reducing the potential for amputation. However,

the lack of specificity in these imaging modalities makes it hard

to differentiate cell types that have a different pathological origin

(137). Diagnostic clinical applications of targeted imaging

techniques would provide health-care providers with detailed

information about vascular processes at the cellular level. To that

effect, nano-particles containing multiple biomolecular targets in

hybrid imaging techniques on lower mammals create a

molecular contrast in activated endothelial cells (145–147).
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Additionally, researchers have used nuclear labeling techniques

in single-photon emission computerized tomography (SPECT)

analysis for measuring the localization of leukocytes (148).

However, the limited spatial resolution of nuclear imaging can

cause poor anatomical localization (137, 148). Intravital

Microscopy (IVM) is an imaging technique that offers an

improved resolution of vascular tissue in small animals.
Intravital microscopy in the assessment
of diabetic vasculopathy

IVM is a microscopic technique that can track the biological

changes, cell function and cellular response in real-time and

subcellular level in a live animal. It combines 3-dimensional

reality in situ with real-time detailed analysis at the subcellular

level (149). IVM provides a whole dynamic nature of the live

structure of organisms under observation. Among other benefits,

IVM (i) is compatible with a great range of labeling methods, (ii)

enables time-course dynamic imaging in situ, (iii) does not rule

out complete interplay in intact, in vivo system, (iv) provides

high spatial resolution, (v) even subcellular context at a

molecular level can be examined, (vi) quantitative data, (vii)

over time analysis decreases the number of animals used in the

study (150). All contrast methods used in IVM work well with

laser scanning microscopy and any multimodal microscopy.

In the context of healing wounds, the application of the IVM

technique can acquire high-resolution images and reveal the

composition of the wound, flux of migratory cells and how

vascular tissue elements respond to potential drugs and

treatments. The combination of 2 Photon-IVM (2P-IVM) and

a growing variety of mouse strains with fluorescent reporters

have paved the way to evaluate the involvement and influence of

particular dermal elements such as hair follicles, glands, vessels

and nerves therein during dermal immune responses (151). 2P-

IVM can spot collagens in the skin owing to second-harmonic

generation (SHG), which facilitates and simplifies trails of cells

and invader organisms. Similar to this common fiber

visualization, there several agents staining blood (Evans Blue,

dextrans), lymphs (anti-LyVE-1) and dermal cells (e.g.

CellTracker™ CMTMR, CMTPX dyes) (151).

In IVM, dorsal ear, flank, footpad and dorsal skin imaging

are the most commonly used models (Figure 5). Since different

skin parts vary in terms of milieu, response, cellular

composition, fiber components, nerve and vessel network, etc.,

researchers select the imaging model as per their particular study

or adapt the model to their requirements. Overall, these

variabilities can affect skin studies (153). Ear pinnae imaging is

a compatible method for infection, injury, allergy and

hypersensitivity-related studies (154). According to the

requirement of the studies, different skin imaging models are

developed. In the case of HSV-1 virus, infecting the epicutaneous

part of the skin, a larger surface area is needed than the ear
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pinnae model presents. As such, the skin flank imaging model

started to be employed, a good model to explore viral lesions and

responses at the outer dermal layers (151). It links minimal

surgery, better reproducibility, and the accession of the lesional

part without cauterization. Dorsal and footpad imaging are

preferred in invasive and longitudinal studies including

microvascular regeneration, wound healing (155), and dermal

tumors (156–158), rather than infection-related studies. Dorsal

skin imaging is longitudinal and non-invasive imaging and is

appropriate for infection-related studies. With a skin-fold dorsal

skin chamber model (155), repetitive intravital images can be

taken (150).

In this article, we examined the disposition of a cationic

lipophilic fluorescent dye, rhodamine 123 (RH123) used as a

mitochondrial-specific stain to measure mitochondrial

membrane potential in the IVM (159). In addition, Dextran,

Texas Red™, 40,000 MW (40kDA), was used to mark vascular

elements in the adult mouse skin. Briefly, the C57BL/6 mouse
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was anesthetized using 5% isoflurane in an induction chamber

for up to 2-3 min. After that, the mouse was mounted to a nose

cone with 2-3%. After a surgical level of anesthesia was reached,

the mouse was placed on a plastic plate with a heating pad

covered with a surgical drape to maintain the body temperature

at ~37.5°C. The depth of anesthesia was measured by toe pinch.

To visualize vasculature and follow dynamics changes, first,

animals were injected with 20mg/ml solution containing

40kDA dextran Texas Red™ dissolved in 1X PBS, then

followed with the injection of 20mg/ml solution containing

RH123 through the jugular vein. Z-stack images were taken of

the same visual field as observed by time-lapse imaging and

processed with Imaris software (Oxford Instruments) (Figure 6).

At its current stage, IVM has some limitations such as (i)

limited depth into the tissue up to a few hundred microns, (ii)

clearance of fluorescent dye, (iii) costly labeling by systemic

injection that entails high doses of probes, (iv) unknown and

hardly estimated marker amount reaching the target, (v)

inflexibility to utilize different animal disease models, (vi)

mostly based on murine models and (vii) anesthesia duration.

These issues need to be addressed and optimized with future

improvements during tissue-level analyses of diabetic

vasculopathy in a live animal.
Conclusion

The domain of vascular pathology ranges from acute illness

to chronic debilitating disease. T2DM and diabetic vasculopathy

has a large breadth of literature surrounding intricate chemical

cascades and genomic findings implicating the role of genetics in

the disease process. Ranging from large vessel atherosclerosis to

small peripheral intimal hyperplasia and endothelial

dysfunction, diabetic vasculopathy is a widespread multiorgan

pathology that has limited therapeutic intervention. However,

there is a lack of comprehensive review of the types of

mechanisms by which diabetic vasculopathy is regulated. In

specific the regulatory processes of diabetes that occur

extrinsically in DNA were not fully explored. This dimension

of epigenetics is particularly interesting for diabetes due to the

multifaceted transmission of the disease. Diabetes has long been

considered not only a genetic disease but a disease that relies on

environmental cues for expression. This complex interplay is

seen in the inheritance patterns of T2DM. This same dogma

applies to the epigenetic regulations that we have examined

earlier where epigenetic regulation is analogous to

environmental stressors producing a diabetic phenotype.

While the molecular role of diabetes has been largely explored

with dozens of chemical cascades being outlined, there is still a

dearth of literature specifically targeting the regulatory

mechanisms of diabetes. This article reviews not only the

regulatory mechanisms of diabetes, but also the epigenetic

regulations of diabetic vasculopathy. These regulatory
FIGURE 5

Optical windows and imaging chambers for skin and adipose
tissue visualization by IVM. Non-invasive methods include (A) ear
pinna imaging and (B) foot-pad imaging. A semi-invasive method
(C) includes the dorsal skinfold chamber, which requires the
surgical implantation of two titanium or polymer frames that can
hold a ring with a glass coverslip through which imaging is
performed. An invasive method is the generation of a skin flap
(D), whereby a skin flap is generated, exposing a large imaging
area. This procedure is invasive and terminal. A less commonly
used method for IVM imaging is the skin flank (E) which requires
the generation of an incision at a dorsolateral location, and
either direct imaging or mounting on a stainless-steel disc for
stable image acquisition. For adipose tissue imaging, various
types of windows exist to visualize various depots (marked by X).
To image the perigonadal adipose tissue, a terminal lower
abdominal window (F) was generated. Reproduced under the
terms of the Creative Commons CC BY license published by
John Wiley and sons. The following original report is credited:
De Niz et al. (152).
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processes occur exclusively outside the domain of DNA

structure and order and thus are appealing for their potential

therapeutic targets.

In particular, the examination of the epigenetic regulations of

diabetic vasculopathy has shown that the involved epigenetic

regulators have multiple roles. Loss of angiogenesis not only

affects diabetic wounds but can also cause limited perfusion,

systemic hypertension, and cutaneous wound healing. On the

other hand, the increase in angiogenesis seen in diabetic

retinopathy works on an opposite theme where excess blood

vessel proliferation causes worsening retinopathy. Thus, there is

still a role to elucidate the specific role of epigenetic modifications as

they change across the body. Similarly, the role of microRNAs has a

strong regulatory function, but the function is largely dependent on

the environment such as hyperglycemia. Interestingly, the role of

epigenetics offers itself as a prime therapy for pharmaceutical

intervention. Since these mechanisms operate outside of the

genome and do not have downstream cascades, alterations to

these methylation proteins or histone modifiers can have a

profound impact on the treatment of diabetic vasculopathy. This

will of course be built on fully understanding how these regulatory

agents work and specifically under what conditions. This may create

a situation where therapy is indicated at a certain threshold (such as

an HbA1C percent) but is contraindicated at lower or

physiologic levels.
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FIGURE 6

Intravital labeling for two-photon microscopic imaging of adult mouse skin vasculature. (A) Texas Red 40 KDa dextran marked the perfused vasculature
and Rhodamine-123 marked the cytoplasm of cells present nearby the vasculature containing mitochondria. Scale bar = 80 µm. (B) Using Imaris
software the 3-dimensional vessel structure was reconstructed from a region of interest (ROI) from panel (A) Grey color represent second-harmonic
generation (SHG) indicative of collagen in the skin tissue.
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