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Abstract: Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical
outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria,
which are critical to maintaining cardiac function. Despite sex dimorphisms in consequences of these
injuries, it is unclear whether mitochondrial bioenergetic responses to inflammation/oxidative stress
are sex-dependent. We hypothesized that sex disparity in mitochondrial bioenergetics following
TNFα or H2O2 exposure is responsible for reported sex differences in cardiac damage/dysfunction.
Methods and Results: Cardiomyocytes isolated from age-matched adult male and female mice
were subjected to 1 h TNFα or H2O2 challenge, followed by detection of mitochondrial respiration
capacity using the Seahorse XF96 Cell Mito Stress Test. Mitochondrial membrane potential (∆Ψm)
was analyzed using JC-1 in TNFα-challenged cardiomyocytes. We found that cardiomyocytes isolated
from female mice displayed a better mitochondrial bioenergetic response to TNFα or H2O2 than
those isolated from male mice did. TNFα decreased ∆Ψm in cardiomyocytes isolated from males
but not from females. 17β-estradiol (E2) treatment improved mitochondrial metabolic function in
cardiomyocytes from male mice subjected to TNFα or H2O2 treatment. Conclusions: Cardiomyocyte
mitochondria from female mice were more resistant to acute stress than those from males. The
female sex hormone E2 treatment protected cardiac mitochondria against acute inflammatory and
oxidative stress.

Keywords: mitochondrial bioenergetics; sex-specific differences; acute inflammation; oxidative stress

1. Introduction

Cardiac damage and dysfunction following trauma, sepsis, and heart surgery (having
myocardial ischemia) largely impact clinical outcomes [1–7]. Over 50% of all critically in-
jured trauma patients requiring intensive care unit (ICU) treatment develop cardiovascular
dysfunction, which contributes to 20% mortality [5,8]. Septic patients with cardiovas-
cular dysfunction are three to four times more likely to die than those without cardiac
damage [6,7]. Moreover, about 40% of the incidence of new irreversible myocardial injury
occurs in patients who underwent heart surgery with cardiopulmonary bypass [9]. Such
cardiac damage is associated with increased mortality, slowed recovery, and longer ICU
stay and hospitalization [1–4]. To date, the precise cause of cardiac damage and dysfunction
remains elusive during these acute injuries. Therefore, gaining a better understanding of
the pathophysiological process underlying cardiac dysfunction and damage is critical for
developing effective therapeutic approaches to improve patient prognosis.

Given that the heart is a high-energy-demanding organ, energy metabolism plays
a central role in heart pathophysiology [10]. Mitochondria, one of the most important sub-
cellular organelles in cardiomyocytes, provide 90% of the energy required for maintaining
normal cardiac function and are central to heart bioenergetics. Therefore, mitochondria
are a key determinant of cardiac pathophysiology. Inflammatory mediators, such as tumor

Int. J. Mol. Sci. 2022, 23, 9312. https://doi.org/10.3390/ijms23169312 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23169312
https://doi.org/10.3390/ijms23169312
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9360-5468
https://doi.org/10.3390/ijms23169312
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23169312?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 9312 2 of 15

necrosis factor α (TNFα), and reactive oxygen species (ROS) have been shown to impair
mitochondrial function [11,12]. TNFα and ROS significantly increase preceding cardiac
damage and dysfunction following trauma, sepsis, and myocardial ischemia [13–20]. Local
cardiac inflammatory response and oxidative stress have been demonstrated as the primary
driving force for cardiomyocyte impairment and functional damage following these in-
juries [8,19,21–26]. On the other hand, sex dimorphism impacts consequences after trauma,
sepsis, or myocardial ischemia [27–32]. Women, specifically young females, demonstrate
a more favorable outcome and decreased mortality following traumatic injuries [31,33–37].
Epidemiological studies also consistently report that the male sex is an important risk
factor for severe sepsis with developed organ dysfunction [38–41]. Our previous studies
have further shown sex disparities in myocardial responses to global ischemia with better
recovery in female hearts compared to male ones [25,42–45]. Of note, the influence of
sex has been observed on the expression of genes related to cardiac energy metabolism
and mitochondria [46]. Collectively, we propose that sex-specific mitochondrial metabolic
response to inflammatory mediators or ROS may be one of the underlying mechanisms for
sex disparities in cardiac damage/dysfunction.

We have shown that TNFα depresses cardiac function and that females are more
tolerant to TNFα-induced cardiac dysfunction than males [42,47,48]. Sex differences exist in
mitochondrial membrane potential and ROS generation in adult cardiomyocytes exposed to
hydrogen peroxide (H2O2, the most stable form of ROS) [45]. However, it is unclear whether
sex as a biological variable influences mitochondrial bioenergetic profile of cardiomyocytes
in response to TNFα or H2O2. In this study, we determined mitochondrial metabolic
function in cardiomyocytes isolated from male and female mice upon exposure of TNFα
or H2O2 using the extracellular flux (XF) methodology (Seahorse Cell Mito Stress test)
and evaluated the role of the female hormone estrogen in regulating the cardiomyocyte
mitochondrial bioenergetic profile during acute stress.

2. Results
2.1. Effects of Cell Density and Carbonyl Cyanide-4 (Trifluoromethoxy) Phenylhydrazone (FCCP)
Concentration on Mitochondrial Bioenergetic Response

To acquire reliable oxygen consumption rate (OCR) measurements, we first determined
the optimal cardiomyocyte seeding density. The linear OCR values were observed between
cell densities of 6000 and 20,000 cells per well seeded overnight on a 24-well Seahorse
plate [49]. In addition, 1000 cells per well using a 24-well Agilent Seahorse plate were
suitable to measure mitochondrial metabolic rate in cardiomyocytes a couple of hours
after their isolation [50]. In this study, we performed the XF Mito Stress test several (three
to six) hours after cardiomyocyte isolation using a 96-well Agilent Seahorse V3 plate.
Therefore, we tested cell density of 1500 or 3000 cells per well. We did not see a difference
in basal (State III respiration) OCR values between these two groups in cardiomyocytes
isolated from adult male and female mice (Figure 1A). Based on the Agilent Seahorse XF
recommendation, basal OCR ranges would be targeted between 20 and 165 pmol/min to
avoid potential floor or ceiling values after using mitochondrial respiration modulators.
Additionally, to minimize the effect of losing unattached cells on mitochondrial bioenergetic
measurements, we selected higher cardiomyocyte density (3000 cells/well) that fell into
the recommended basal OCR range in the rest of this study.

To determine the optimal dose of FCCP, we conducted an FCCP titration experiment.
We used 0, 0.5, 0.75, 1, and 1.5 µM of FCCP in different cell density assays. Cardiomy-
ocytes without the FCCP treatment failed to display a maximal bioenergetic response
(Figure 1B). We found that 0.75 µM of FCCP was suitable to induce a maximal respiration
response in both 1500 and 3000 cells/well (Figure 1C,D) and used this FCCP dose for
the rest of our experiments. The OCR trace with different doses of FCCP is shown in
Supplemental Figure S1A,B. Cardiomyocytes were detected instantly prior to the assay
(Supplemental Figure S1C).
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Figure 1. Effect of cell number and FCCP concentration on mitochondrial respiratory function in
cardiomyocytes. (A) Basal oxygen consumption rate (OCR) in different cell densities. (B) The OCR
trace and maximal OCR value without addition of FCCP in cardiomyocytes isolated from adult male
mice. (C) Maximal OCR values with 0.5, 0.75, 1, and 1.5 M of FCCP in cardiomyocytes isolated from
adult male mice at cell densities of 1500 (C1) and 3000 cells per well (C2), respectively. (D) Effect of
FCCP concentration on maximal metabolic rate in cardiomyocytes isolated from adult female mice
(3000 cells/well). Data were analyzed using the t-test or one-way ANOVA and represented as the
mean ± SEM.

2.2. Mitochondrial Bioenergetic Function between Cardiomyocytes Isolated from Adult Male and
Female Mice

There were no differences in functional measurements of respiratory chain activities in
mitochondria isolated from male and female rat hearts [51]. To determine the role of sex in
mitochondrial bioenergetic function in a cellular context, we performed the Seahorse Cell
Mito Stress test in intact cardiomyocytes isolated from age-matched adult male and female
mice in this study. Based on six individual Seahorse assays on cardiac myocyte isolated
from six male and six female mouse hearts, we observed comparable OCR values of basal,
non-mitochondrial, and maximal respiration capacities in adult cardiomyocytes from male
and female mice (Figure 2A,B).
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Figure 2. Metabolic profiling between cardiomyocytes isolated from adult male and female mice
following addition of oligomycin (Oligo), FCCP, and Antimycin A/Rotenone (A/R). (A) The OCR
trace. (B) Calculated values for mitochondrial basal, non-mitochondrial, maximal, and spare respira-
tory parameters between cardiomyocytes isolated from male (M) and female (F) mice. Data were
evaluated using the Mann–Whitney test in B and shown as box and whiskers plots with a dot for
each individual measurement. The results are from six mouse hearts of each sex in six trials.
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2.3. Sex Differences in Cardiac Mitochondrial Bioenergetic Response to TNFα or H2O2

Our published study has revealed that there are sex disparities in TNFα-induced
cardiac dysfunction [42,47,48] and in oxidative stress (H2O2)-damaged mitochondrial
membrane potential (∆Ψm) in cardiomyocytes [45]. We thus determined mitochondrial
metabolic changes following TNFα or H2O2 exposure in cardiomyocytes isolated from
age-matched adult male and female mice. According to our previous work in which serum
TNFα levels were ~11.5 ng/mL at 1 h after a lipopolysaccharide challenge in vivo [52]
and a TNFα dose-response study (Figure 3A), we selected 10 ng/mL of TNFα in our
experiments. Decreased OCR values of basal and non-mitochondrial respiration but in-
creased maximal respiratory rate and spare capacity were observed in cardiomyocytes
isolated from female mice when compared to those from males upon 10 ng/mL of TNFα
stimulation (Figure 3B,C). The choice of H2O2 used at 50 µM for 1 h was based on our
previous work, showing that this dose of H2O2 significantly reduced mitochondrial ∆Ψm
but caused negligible cell death in cardiomyocytes isolated from male adult mice [45].
Notably, cardiomyocytes isolated from female mouse hearts displayed higher levels of
maximal mitochondrial respiratory function in response to H2O2 compared to those of
male cardiomyocytes (Figure 4A,B).
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Figure 3. Sex differences in TNFα-changed metabolic profiling between cardiomyocytes isolated
from adult male and female mice. (A) TNFα dose-responsive mitochondrial function: basal, non-
mitochondrial, and maximal OCR in cardiomyocytes from male mice. Data were analyzed using
one-way ANOVA with Dunnett’s multiple comparisons test and represented as the mean ± SEM.
(B) The OCR trace in cardiomyocytes isolated from male (M) and female (F) mice following TNFα
treatment (10 ng/mL, 1 h). (C) Quantification of basal OCR, non-mitochondrial OCR, maximal rate,
and spare respiratory capacity in cardiomyocytes isolated from M and F mice subjected to TNFα
(10 ng/mL, 1h). Data were evaluated using the Mann–Whitney test in C except for spare capacity
(t-test) and shown as box and whiskers plots. The results from four mouse hearts of each sex in
three trials.
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Figure 4. Sex differences in H2O2-altered bioenergetic response in cardiomyocytes isolated from male
and female mice. (A) The OCR trace in cardiomyocytes from male (M) and female (F) mice following
H2O2 (50 µM, 1 h) treatment. (B). Quantification of basal OCR, non-mitochondrial OCR, maximal
rate, and spare respiratory capacity in cardiomyocytes from M and F mice subjected to H2O2. Data
are analyzed using the Mann–Whitney test in B and represented as box and whiskers plots. The
results were from four mouse hearts of each sex in four trials.

2.4. Effect of 17β-Estradiol (E2) on Mitochondrial Bioenergetic Function in Adult Cardiomyocytes
Isolated from Male Mice

Among the factors contributing to sex differences, estrogen plays a key role in mediat-
ing sex disparities in the cardiovascular system [53,54]. Therefore, we assessed the effect of
E2 on mitochondrial respiration performance in cardiomyocytes isolated from male adult
mice following TNFα or H2O2 exposure. The dose of E2 was selected according to our pre-
vious studies [45,55,56]. We found that TNFα significantly increased the non-mitochondrial
respiration rate and reduced maximal respiration capacity, while E2 treatment restored
the TNFα-impaired mitochondrial bioenergetic response in cardiomyocytes from male
mice (Figure 5A). Decreased maximal OCR value was observed in H2O2-stimulated car-
diomyocytes. Intriguingly, H2O2-disrupted mitochondrial metabolic function was also
protected by E2 usage (Figure 5B). E2 did not affect the mitochondrial bioenergetic response
in cardiomyocytes isolated from male adult mice without stress (Supplemental Figure S2).
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Figure 5. E2 restored mitochondrial respiratory function in cardiomyocytes isolated from male adult
mice following acute stress of TNFα (A) or H2O2 (B) exposure. (A1,B1) The OCR trace. (A2,B2) E2
(100 nM) treatment restored TNFα- or H2O2-impaired mitochondrial respiration function (maximal
OCR and spare respiratory capacity) in cardiomyocytes. Data were evaluated using the Kruskal–
Wallis test in (A2,B2) and are shown as box and whiskers plots. The results were from at least
three male mouse hearts in at least three trials.
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2.5. Alteration of Mitochondrial Membrane Potential in TNFα-Treated Cardiomyocytes

The mitochondrial ∆Ψm generated by proton pumps (Complexes I, III, and IV) plays
a key role in mitochondrial homeostasis and is essential for maintaining mitochondrial
metabolic function. We have shown that H2O2 damaged mitochondrial ∆Ψm, which was
preserved by E2 treatment in cardiomyocytes isolated from male mice [45]. Given sex
differences in the TNFα-disrupted mitochondrial bioenergetic response, we further deter-
mined the effect of TNFα on mitochondrial ∆Ψm in cardiomyocytes isolated from male and
female mice. We observed that TNFα markedly decreased mitochondrial ∆Ψm in cardiomy-
ocytes from male mice but not from females (Figure 6B). Importantly, improved mitochon-
drial ∆Ψm was noticed in E2-treated cardiomyocytes from male mice upon TNFα exposure
(Figure 6C), while E2 treatment did not impact mitochondrial ∆Ψm in female cardiomyocytes
with TNFα stimulation (Supplemental Figure S3). Representative images of JC-1-stained
cardiomyocytes from each experimental group are shown in Supplemental Figure S4.
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Figure 6. Effects of TNFα and E2 on mitochondrial membrane potential in adult cardiomyocytes.
(A) Representative images of mitochondrial membrane potential using JC-1 in adult mouse cardiomy-
ocytes. Scale bar = 20 µm. (B) Changes of mitochondrial membrane potential in cardiomyocytes
isolated from male (M) and female (F) adult mice upon TNFα (10 ng/mL, 1 h) exposure. Two-way
ANOVA analysis with a Tukey’s multiple comparisons post hoc test was used. The p-value was
<0.0001 for factor of the sex, 0.0046 for factor of TNFα, and 0.0013 for the interaction between the
two factors. (C). 17β-estradiol (E2, 100 nM) preserved TNFα-impaired mitochondrial membrane
potential in cardiomyocytes isolated from male mice. One-way ANOVA with Dunnett’s multiple
comparisons test was used and represented as the mean ± SEM. The results were from at least
three mouse hearts of each sex in at least three trials.

3. Discussion

This is the first study to determine sex differences of bioenergetic profiling in isolated
intact adult mouse cardiomyocytes subjected to TNFα or H2O2 exposure using a high-
throughput XF analyzer. Here, our results indicated that cardiomyocytes from female mice
displayed a better mitochondrial bioenergetic response to TNFα or H2O2 with higher maxi-
mal respiratory capacity than those from male mice. In addition, E2 treatment improved
mitochondrial metabolic function in cardiomyocytes isolated from male mice following
TNFα or H2O2 treatment. These data suggest that the benefit in cardiomyocytes from
female animals may be attributable to estrogen-derived mitochondrial protection, at least
in part.
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Mitochondria mainly function as the high-energy molecule ATP factory in eukaryotic
cells and are abundant in cardiomyocytes, comprising about 35% of myocyte volume in
the heart [57]. The normal heart function relies on tremendous energy from oxidative
phosphorylation that is largely met via mitochondrial metabolism. Herein, we employed
the Seahorse XF extracellular flux technology to analyze mitochondrial respiration func-
tion in adult cardiomyocytes. In addition to gaining the basal respiration rate, Seahorse
XF analysis provides important information on key parameters of mitochondrial bioen-
ergetic profiling using respiration modulators as follows: (1) oligomycin to inhibit ATP
synthase (complex V) for acquiring the fraction of oxygen consumption linked to cellular
ATP production; (2) FCCP, an uncoupling agent, to disrupt mitochondrial ∆Ψm through
breaking down the proton gradient, thus resulting the maximal oxygen consumption
by complex IV; and (3) combination of rotenone (complex I inhibitor) and antimycin A
(complex III inhibitor) to shut down mitochondrial respiration, enabling the estimation of
non-mitochondrial respiration.

The use of oligomycin and the dose of the uncoupler, FCCP, are important to determine
respiratory capacity. Oligomycin blocks the proton channel of ATP synthase, inhibiting
protons back into the mitochondria and thus decreasing electron flow to reduce mito-
chondrial respiration. The presence of oligomycin also prevents the reverse activity of
ATP synthase due to rapid depletion of intracellular ATP during calculation of maximal
respiration (after FCCP addition). While the use of oligomycin following basal measure-
ments decreases mitochondrial respiration in most cells, we found that it did not impact
OCR in adult cardiomyocytes in the present study. This finding is in line with a previous
observation that mitochondrial oxygen consumption and the substrate-consuming process
during basal respiration are mainly mediated by proton leak in isolated cardiomyocytes
from other groups [49,50] and likely due to reduced ATP demand from inhibition of my-
ocyte contraction during basal respiration in quiescent cardiomyocytes. Of note, a higher
dose of oligomycin has been reported to disturb the subsequent response to FCCP, thus
decreasing maximal OCR [49,58]. The choice of 1 µM of oligomycin used in this study
was based on previous studies showing the suitability of this dose in adult cardiomy-
ocytes [49]. Therefore, here it was sufficient to block ATP synthase but not to reduce the
maximal respiration rate. On the other hand, an uncoupler of FCCP is used to estimate
maximal capacity of the mitochondrial electron transport chain (ETC). After mitochondrial
∆Ψm is collapsed by FCCP, electron flow is uninhibited through the ETC, and oxygen
consumption reaches the maximum. Although FCCP is often used at 1 µM in the Mito
Stress Test assay [49], it displays a bell-shaped dose-response curve due to excess FCCP
(over the optimal uncoupling concentration) inhibiting respiration [59]. Thus, it is necessary
to determine the optimal dose of FCCP in different cell populations. Herein, we found
0.75 µM of FCCP able to support maximal uncoupled respiration in adult cardiomyocytes.
A decrease in FCCP-stimulated respiration is a strong indicator of potential mitochondrial
malfunction [60].

While sex differences have been observed in mitochondrial ROS production/oxidative
damage [61–63] and in calcium-induced mitochondrial swelling (mitochondrial permeabil-
ity transition pore opening) [51,64], there is little information available regarding the role
of sex in mitochondrial bioenergetic function in adult cardiomyocytes. It is noteworthy
that sex-specific differences have been reported in metabolic responses following acute
injury, such as trauma, shock, and sepsis [65,66]. In the present study, we demonstrated
the initial evidence showing the impact of sex as a biological variable on cardiac mito-
chondrial metabolic alterations upon TNFα or H2O2 stress. We observed that during
normal conditions, there were no differences in the mitochondrial bioenergetic response in
cardiomyocytes isolated from age-matched adult male and female mice. In fact, compa-
rable mitochondrial respiratory chain activities in substrate oxidation and coupled ATP
generation have been reported in mitochondria from male and female rat hearts, with
similar amounts of respiratory chain complexes I–IV [51]. However, there was better mito-
chondrial metabolic function with higher maximal respiration capacity in cardiomyocytes
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from female mice when compared to those from male ones in response to TNFα or H2O2,
indicating better performance and less damage in cardiomyocytes from female animals
during such stress. These findings provide the mechanistic evidence in support of the
female heart resistant to TNFα-depressed cardiac function and to cardiac dysfunction
induced by trauma/sepsis/ischemia (increased inflammatory cytokines and ROS).

Despite sex differences attributable to multiple aspects, the sex hormone estrogen is
a key factor in mediating the female myocardial response to injury [53,54]. Myocardial
ischemia occurs uncommonly in premenopausal women, whereas this risk increases in
the postmenopausal age group [67,68], suggesting that the presence of estrogen likely
protects the heart from ischemic injury. Studies from our group and others have shown
that exogenous estrogen supplementation provides cardioprotection in male and ovariec-
tomized female animals following acute myocardial ischemia/reperfusion (I/R) injury or
trauma hemorrhage [44,69]. With respect to the influence of E2 on mitochondrial function,
investigations mainly focus on the transcriptional regulation of E2 in expression of nuclear-
encoded mitochondrial respiratory complex genes and mitochondrial DNA through es-
trogen receptors [70]. In fact, E2 can directly localize to the mitochondrial membrane,
decreasing microviscosity and improving bioenergetic function in skeletal muscle [71]. Es-
trogen has also been reported to interact with ATP synthase, thus regulating cellular energy
metabolism [72]. We have further observed that acute E2 treatment protected mitochondrial
∆Ψm in cardiomyocytes from male adult mice and reduced mitochondrial ROS production
following I/R or an H2O2 challenge [45]. In this study, we extended our findings to the
effect of rapid E2 usage on the mitochondrial bioenergetic response to acute stress (TNFα or
H2O2 stimulation here). We found that concomitantly using E2 (1 h) significantly restored
TNFα- or H2O2-impaired mitochondrial maximal respiratory function in cardiomyocytes
isolated from adult male mice. Improved mitochondrial spare capacity was also noticed in
E2-treated cardiomyocytes. Notably, during stress, energy demand increases, and more
ATP is needed to maintain cellular functions. Larger spare respiratory capacity implies
that more ATP can be produced in a cell to overcome more stress. Therefore, our results
suggest that E2 treatment improves the cardiomyocytes’ ability to meet largely increased
ATP turnover upon acute stress. It is noteworthy that the rapid use of estrogen post-injury
provided therapeutic potential following trauma–hemorrhage [73–75], burn [76,77], and
sepsis [78,79]. Our group also demonstrated the beneficial effect of acute post-ischemic E2
treatment on heart I/R [45,80]. More importantly, one-dose usage of E2 right after a burn
injury significantly improved cardiac function and preserved mitochondrial performance
within 24 h [77]. We further observed that E2 treatment post ischemia corrected male car-
diomyocyte mitochondrial activity following I/R [45]. Together with our current findings,
these studies strongly support considering the rapid use of E2 as an adjunct therapy for
patients under acute stress.

The values of key parameters in mitochondrial bioenergetic profiling relies on a nor-
mal proton gradient, which is formed by mitochondrial ∆Ψm. Disrupted mitochondrial
∆Ψm by TNFα or H2O2 collapses the proton gradient prior to FCCP addition, thus leading
to reduced maximal uncoupled respiration. Our previous study has indicated that H2O2
impairs mitochondrial ∆Ψm in cardiomyocytes from male mice [45], along with a decreased
maximal OCR value here. We further observed that TNFα significantly reduced mitochon-
drial ∆Ψm in cardiomyocytes from male mice (not from female animals), associated with
lower maximal respiration capacity in the present study. E2 treatment restored TNFα-
damaged mitochondrial ∆Ψm and maximal respiratory response in cardiomyocytes from
male mice. These data confirmed the importance of mitochondrial ∆Ψm in maintaining
mitochondrial bioenergetic function.

It is evident that antibiotics (streptomycin and gentamicin) are toxic to mitochon-
dria. Cells, including prostate cancer cells, human lymphoblastoid cells, and hepato-
cytes, cultured in the presence of streptomycin do not maintain oxidative metabolism,
and mitochondria isolated from streptomycin-treated cells do not display respiration on
any substrate [81]. In this regard, we performed experiments to determine the effect of
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Pen/Strep on mitochondrial respiration in isolated cardiomyocytes. Our results indicated
that comparable respiration function was observed in cardiomyocytes cultured in the
presence or absence of Pen/Strep (Supplemental Figure S5), suggesting that Pen/Strep,
at least in short-time use, do not affect the mitochondrial bioenergetic response in intact
cardiomyocytes.

A supraphysiological concentration of pyruvate (1 mM) was present in the assay
medium in this study [49], leading to a bioenergetic response of adult cardiomyocytes inde-
pendent of other substrates (i.e., fatty acid, glucose). Despite 60–90% of energy demands
in the healthy heart for oxidative phosphorylation from fatty acid oxidation, a metabolic
shift with greater rate of lipid oxidation and decreased glucose oxidation has been ob-
served in heart-failure patients [10,82]. Considering sex-related differences in fatty acids’
metabolism [46,83], it would be of great interest to examine the role of sex on substrate-
dependent mitochondrial respiratory function during acute stress in the future. To this
end, pyruvate titration is required to be performed at more physiological levels [49]. In the
current study, the XF Cell Mito Stress Test was used to assess mitochondrial bioenergetic
function. If the work focuses on glycolytic activity in adult cardiomyocytes during stress,
the acidification rate (ECAR) needs to be analyzed using the XF Glycolysis Rate Assay. Sim-
ilarly, ATP production from mitochondrial respiration and glycolysis can also be measured
in isolated cardiomyocytes under pathophysiological conditions using an Agilent Seahorse
XF Real-Time ATP Rate Assay kit in the future. Of note, individual ETC complexes can be
assembled into supercomplexes (SCs) to transfer electrons/substrates more efficiently, to
protect individual ETC complexes, to reduce ROS production, and to coordinate alterations
in cellular metabolism [84]. Emerging evidence has suggested that deficiency/disruption
of SCs is associated with myocardial ischemia and heart failure [85,86]. In the present
study, we did not evaluate the role of sex in modulating the formation of mitochondrial
SCs in cardiomyocytes during acute stress. However, particular interest will be given to
this important unknown in our future investigation.

4. Materials and Methods
4.1. Animals

Male and female C57BL/6J mice were purchased from Jackson Laboratories (Bar
Harbor, ME, USA). All mice were acclimated for at least 5 days with a standard diet before
the experiments. A total of 24 mice (14 males and 10 females) at 11–22 weeks of age were
used for the experiments.

4.2. Adult Mouse Cardiomyocyte Isolation and Preparation

A Langendorff perfusion system was used to isolate single cardiomyocytes from
adult male and female mouse hearts as we described previously [45,87]. Briefly, after being
injected with heparin (100 IU, i.p.), the mice were euthanized with an overdose of isoflurane.
The hearts were excised rapidly and transferred to a Langendroff unit immediately. The
hearts were retrogradely perfused with a calcium-free perfusion buffer (NaCl 113 mM,
NaH2PO4 0.6 mM, NaHCO3 1.6 mM, KCl 4.7 mM, KH2PO4 0.6 mM, MgSO4 1.2 mM,
HEPES 10 mM, Taurine 30 mM, 2,3-butanedione monoximoe [BDM] 10 mM, and glucose
20 mM, pH 7.4) for 2–3 min. The hearts were then digested with collagenase II (1.5 mg/mL)
for 11–13 min. Isolated cardiomyocytes were sequentially restored in a perfusion buffer
containing calcium (100, 250, 500, or 1000 µmol/L CaCl2). After that, cardiomyocytes were
counted (repeating three times: 15 µL of cell suspension + 15 µL of trypan blue; 10 µL of the
mixture was added into the hemocytometer chamber for living cardiomyocyte counting),
calculated, and diluted in 1500 cells/100 µL or 3000 cells/100 µL with a cardiomyocyte
plating medium (Opti-MEM + 2.5% FBS, 10 mM BDM, and 1% Pen/Strep). One hundred
microliters of diluted cell solution was seeded into laminin (20 µg/mL)-precoated XF96 cell
culture plates (V3 PS) or 96-well plates and cultured for 2 h at 37 ◦C, 5% CO2 for adherence.
After that, the cells were used for treatments and a subsequent Seahorse XF Cell Mito
Stress Assay.
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4.3. TNFα Dose-Responsive Experiment of Mitochondrial Respiratory Function

Plasma TNFα reaches a maximum value of 20 ng/mL in septic animals [88]. We
have also shown that serum TNFα levels were ~11.5 and 1.2 ng/mL at 1 and 4 h after
a lipopolysaccharide challenge in vivo, respectively [52]. Therefore, dose escalation studies
of TNFα (0, 5, 10, and 20 ng/mL/min) were conducted on the mitochondrial bioenergetic
response in cardiomyocytes isolated from male adult mice. Cardiomyocytes were plated in
a laminin-precoated XF96 cell culture plate at 3000 cells/well and treated with different
doses of TNFα for 1 h. The cells were then subjected to bioenergetic profiling. The
experiment was repeated two times.

4.4. Mitochondrial Bioenergetic Response by Seahorse XF96 Cell Mito Stress Test

A Seahorse Bioscience XF-96 instrument (Seahorse Biosciences, North Billerica, MA,
USA) was used to measure OCR in the cardiomyocytes as we recently reported [87]. FCCP
titration (0, 0.5, 0.75, 1, and 1.5 µM of FCCP) was performed on cardiomyocytes from male
mice with cell densities of 1500 or 3000 cells per well. Cardiomyocytes (3000 cells/well)
were treated with TNFα (10 ng/mL) or H2O2 (50 µM [45]) in the absence or presence of
E2 (100 nM [45,55,56]) in a supplemented XF medium (5 mM glucose, 1 mM pyruvate,
and 2 mM glutamine) for 1 h. The bioenergetic profile of cardiomyocytes was measured
sequentially as baseline OCR, ATP-linked production by injection of 1 µM oligomycin
(Oligo), maximal uncoupled respiration by adding FCCP, and non-mitochondrial respira-
tion by injection of 0.5 µM rotenone (R) and antimycin A (A). Basal OCR was the last value
before the oligomycin injection - non-mitochondrial OCR. Maximal OCR was the maximal
measurement after using FCCP - non-mitochondrial OCR. Spare respiratory capacity was
represented as the percentage of maximal OCR vs. basal OCR.

4.5. Measurement of Mitochondrial Membrane Potential

Two hours after being cultured in a cardiomyocyte plating medium, isolated mouse
cardiomyocytes were exposed to TNFα (10 ng/mL) +/− E2 (100 nM) for 1 h. The cells
were then treated with a fluorescent probe JC-1 (1 µM, G-Biosciences, St. Louis, MO,
USA) at 37 ◦C. JC-1 shows green fluorescence in cytosol as monomers and displays red
fluorescence in mitochondria as dimers/aggregates. After 30 min of incubation, live-cell
imaging on cardiomyocytes was taken using an Axio Observer Z1 motorized microscope
(Zeiss, Oberchoken, Germany) with a 10× objective. Fluorescence intensity of red and green
in individual cardiomyocytes was quantified using ImageJ (NIH). The ratio of red-to-green
intensity represented the mitochondrial membrane potential.

4.6. Statistical Analysis

All data (except Figures 1 and 3A) were from independent experiments repeated at
least three times in at least quadruplicate. The data were evaluated using an unpaired
t-test or an analysis of variance (ANOVA) test if it passed the Shapiro–Wilk normality test,
and were represented as the means ± SEM. For those data that did not follow a normal
distribution (did not pass the normality test), the Mann–Whitney or Kruskal–Wallis tests
were used and stated in each figure legend. These results are shown as box and whiskers
plots with a dot for each individual measurement (the upper and lower borders of the box
indicating the upper and lower quartiles; the middle horizontal line showing the median;
and the upper and lower whiskers displaying the maximum and minimum values). The
difference was considered statistically significant when p < 0.05. All statistical analyses
were performed using GraphPad Prism (GraphPad, La Jolla, CA, USA).

5. Conclusions

In summary, we investigated mitochondrial bioenergetics in cardiomyocytes isolated
from adult male and female mice upon TNFα or H2O2 exposure using the XF analysis.
We found that cardiac mitochondria in female mouse hearts were more resistant to acute
stress, with better respiratory function than that in male mice. E2 treatment protected
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cardiomyocyte mitochondria from male mice against acute inflammatory and oxidative
stress. Our findings provide particularly important evidence to explain why females have
better cardiac recovery than males after I/R, trauma, shock, or sepsis [25,29,42,43,89].
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A antimycin A
BDM 2,3-butanedione monoximoe
E2 17β-estradiol
ETC electron transport chain
FCCP Carbonyl cyanide-4 (trifluoromethoxy) Phenylhydrazone
F female
H2O2 hydrogen peroxide
ICU intensive care unit
I/R ischemia/reperfusion
M male
OCR oxygen consumption rate
Oligo oligomycin
ROS reactive oxygen species
R rotenone
SC supercomplex
TNFα tumor necrosis factor α
∆Ψm mitochondrial membrane potential
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