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of Elderly Linked to the Observed Severity of COVID-19?

Ahmed S. Abouhashem,1,* Kanhaiya Singh,1,* Hassan M.E. Azzazy,2 and Chandan K. Sen1

Abstract

Human lungs single-cell RNA sequencing data from healthy donors (elderly and young; GEO accession no.
GSE122960) were analyzed to isolate and specifically study gene expression in alveolar type II cells. Colo-
calization of angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 enables severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV 2) to enter the cells. Expression levels of these genes in the alveolar type II
cells of elderly and young patients were comparable and, therefore, do not seem to be responsible for worse
outcomes observed in coronavirus disease 2019 (COVID-19) affected elderly. In cells from the elderly, 263
genes were downregulated and 95 upregulated. Superoxide dismutase 3 (SOD3) was identified as the top-ranked
gene that was most downregulated in the elderly. Other redox-active genes that were also downregulated in cells
from the elderly included activating transcription factor 4 (ATF4) and metallothionein 2A (M2TA). ATF4 is an
endoplasmic reticulum stress sensor that defends lungs via induction of heme oxygenase 1. The study of
downstream factors known to be induced by ATF4, according to Ingenuity Pathway Analysis�, identified 24
candidates. Twenty-one of these were significantly downregulated in the cells from the elderly. These down-
regulated candidates were subjected to enrichment using the Reactome Database identifying that in the elderly,
the ability to respond to heme deficiency and the ATF4-dependent ability to respond to endoplasmic reticulum
stress is significantly compromised. SOD3-based therapeutic strategies have provided beneficial results in
treating lung disorders including fibrosis. The findings of this study propose the hypotheses that lung-specific
delivery of SOD3/ATF4-related antioxidants will work in synergy with promising antiviral drugs such as
remdesivir to further improve COVID-19 outcomes in the elderly. Antioxid. Redox Signal. 33, 59–65.
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Introduction

The human lung alveolar epithelium is mainly
composed of types I/II alveolar cells and macrophages.

In contrast with alveolar type I cells, alveolar type II cells are
capable of giving rise to both type II and type I alveolar cells
(18). Alveolar type II cells serve many critical functions in-
cluding production of pulmonary surfactant, stabilization of
airway epithelial barrier, local immune defense, and airway
regeneration after injury. As one of few cells in the human
body that coexpresses angiotensin-converting enzyme 2
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Innovation

For the first time, single-cell RNA sequencing data
of the human lungs have been studied as a function of
age to reveal that age-related weakening of specific
components of the antioxidant defense system of the
alveolar type II cells should be tested for a mechanistic
connection of COVID-19 severity outcomes.
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(ACE2) receptor and the TMPRSS2 protease, required for
attachment and cellular entry of coronavirus disease 2019
(COVID-19), alveolar type II cells are readily targeted by
coronavirus 2 (severe acute respiratory syndrome cor-
onavirus 2 [SARS-CoV 2]) (8). COVID-19 is an emerging
respiratory disease caused by SARS-CoV 2. Most COVID-
19+ patients exhibit mild to moderate symptoms, with *10%
developing acute respiratory distress syndrome, which is the
leading cause of mortality among these patients (9). Histo-
pathologic changes of the lungs related to COVID-19 include
diffuse alveolar damage, chronic inflammatory infiltrates,
and intra-alveolar fibrinous exudates (30). The severity of
symptoms and mortality of elderly patients are higher than
those of younger patients (14).

Reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS) are known to be produced by cells of the innate
immune system and others in response to viral infection (11).
ROS/RNS are directly implicated in lung fibrosis and declining
lung function (5). Antioxidant enzymes such lecithinized su-
peroxide dismutase (SOD) have proven to be useful in patients
suffering from lung fibrosis (25). There is substantial literature
demonstrating a causative role of ROS/RNS in the develop-
ment of lung fibrosis (21). In virus-induced lung disease, an-
tioxidant treatment attenuated lung inflammation and airway
hyper-reactivity (3). In this study, we utilized single-cell se-
quencing data from elderly and younger humans to specifically
study alveolar type II cells to identify genes that are most
profoundly affected as a function of age. Such effort was in-
tended at developing novel hypotheses to understand why
lungs of the elderly are more severely affected in COVID-19.

Results

Human lungs single-cell RNA sequencing (scRNA-seq)
data from four healthy donors (9783 cells from old-age
group, 57 and 63 years old, and 8501 cells from young-age
group, 22 and 29 years old; GEO accession no. GSE122960)
were analyzed (20). Analysis of scRNA-seq data generated
14 clusters visualized using t-distributed stochastic neigh-
bor embedding (t-SNE). Such clustering was based on a
nonlinear dimensionality reduction technique for embedding
high-dimensional data with the objective of visualization in
low-dimensional space. As depicted in Figure 1A, these
clusters include epithelial cells (alveolar type II cells), mac-
rophages in different states, epithelial cells (alveolar type I
cells), monocytes, B cells, T cells/NK cells, endothelial cells,
and stem cells. SingleR package in R (1), in conjunction with
the Human Primary Cell Atlas (HPCA) data set, was used to
identify alveolar type II cells from the total lung cell popu-
lation. These cells heavily expressed the characteristic sur-
factant protein C gene (Supplementary Fig. 1A, B). Genes of
this particular alveolar type II cell cluster were analyzed for
differential expression as a function of aging (Fig. 1B). Co-
localization of ACE2 and TMPRSS2 enables SARS-CoV 2 to
enter the cells (8). Expression levels of these genes in the
alveolar type II cells of old and young patients were com-
parable (Fig. 1C) and, therefore, do not seem to be respon-
sible for worse outcomes in COVID-19-affected elderly.

Compared with that in alveolar type II cells from younger
donors, in cells of older donors, 263 genes were differentially
downregulated and 95 genes were upregulated (adjusted
p-value <0.05 and 10% log fold change; Fig. 1D, Supple-

mentary Table S1). SOD3 was identified as the top-ranked
(by log of fold change) gene that was most downregulated in
alveolar type II cells (Supplementary Table S1). This ob-
servation piqued our interest in other genes with known redox
functions. Other genes with known redox-based functions
that were also downregulated in alveolar type II cells of el-
derly lung donors included activating transcription factor 4
(ATF4) and metallothionein 2A (M2TA) (Fig. 2A–C). Addi-
tional studies to look for SOD3-interacting genes, as pre-
dicted by String database (String version 11.0), recognized
the following: SOD2, catalase (CAT), glutathione peroxidase
1 (GPX1), GPX2, GPX3, GPX5, GPX7, GPX8, antioxidant 1
copper chaperone (ATOX1), and ATPase copper transporting
alpha (ATP7A) (Supplementary Fig. 2A, B). Among these
candidates, GPX1 was the only gene that was differentially
low in expression in cells from elderly donors (Supplemen-
tary Fig. S2B, Supplementary Table S1). Viral infection is
known to employ endoplasmic reticulum (ER) stress to cause
lung fibrosis (12). ATF4, an ER stress sensor that can defend
lungs via induction of heme oxygenase 1, was downregulated
in alveolar type II cells of the elderly (Fig. 2B). Study of
downstream factors that are known to be induced by ATF4,
according to Ingenuity Pathway Analysis� (IPA), identified
24 candidates. Twenty-one of these 24 were significantly
downregulated in the alveolar type II cells of the elderly
(Fig. 2C). The downregulated candidates were subjected to
pathway enrichment using the Reactome Database. These
analyses identified that in the elderly, the ability to respond to
heme deficiency and the ATF4-dependent ability to respond
to endoplasmic reticulum stress are significantly compro-
mised (Fig. 2D, Table 1).

Discussion

At the time of this reporting, of 13,130 COVID-19 deaths
(of reported death from all causes 582,565 on April 19, 2020)
in the United States as reported by the Center for Disease
Control, 13,001 decedents were of age 35 years or above,
representing 99% of all COVID-19 deaths. Decedents aged
55 years or above account for 91% of all COVID-19 deaths
(19). The younger donors of this study were both <30 years,
whereas the elderly donors were both >55 years (19). In brief,
the SARS-CoV 2 virion contains four proteins: spike, enve-
lope, membrane, and nucleocapsid, and a single-stranded
RNA. The virion binds to ACE2 receptor located on alveolar
type II cells making these cells a target for infection. Once
SARS-CoV 2 has attached to these receptors, the TMPRSS2
protease cleaves the spike protein to expose a fusion peptide
that helps the virus enter the cell (8). This enables the virions
to release their RNA into infected cells. Coexpression of
ACE2 and TMPRSS2 on type II cells makes them a preferred
site for SARS-CoV 2 attachment, entry, and replication (16).
In late stages of the severe form of COVID-19, cytokine
storm has been evident (17). Under these conditions, when
the inflammatory system has gone awry in COVID-19–
unrelated pathologies, there is ample evidence of oxidative
stress (15). Findings of this study, involving an unbiased
query of differentially expressed genes specifically in alve-
olar type II cells of the human lung, point toward specific
elements of the antioxidant defense system that are weakened
as a function of age. SOD3-deficient mice develop severe
lung damage in the presence of normal oxygen tension along
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with marked inflammatory cell infiltration and alveolar
hemorrhage (6). In the lungs, extracellular SOD3 is primarily
expressed in bronchial and alveolar type II epithelial cells,
alveolar macrophages, and pulmonary endothelial cells (4).
Importantly, SOD3 mRNA expression in alveolar cells cor-
relates with locally secreted enzyme activity, defending
functional significance of observed changes in gene expres-
sion (27). With SOD3 as the top-ranked candidate, this study

identifies specific component of the alveolar cell antioxidant
defense systems that are weakened in response to aging.
Evidence in the current literature shows that SOD adminis-
tration can decrease the severity of respiratory illness (7).
Intravenous SOD administration in rabbit models reversed
allergic emphysema (2). SOD-based therapies have also
shown encouraging results in managing infectious diseases
by improving host immune responses. Melon SOD restored

FIG. 1. Identification of 14 distinct clusters within the lung tissue with unique markers for each. (A) t-SNE
projection of the filtered data (18,284 cells; 8501 young; 9783 old). Each cell is represented as a dot. (B) t-SNE clustering of
the epithelial alveolar type II cells, cells showing clear separation between the cells from young and old groups.
(C) Expression level of ACE2 (top) and TMPRSS2 (bottom) in alveolar type II cells. (D) Heatmap of the top differentially
expressed genes between young and old lung alveolar type II cells (log fold change –0.4). Rows represent genes and
columns represent cells. ACE2, angiotensin-converting enzyme 2; t-SNE, t-distributed stochastic neighbor embedding.
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CD4+/CD8+ ratio in cats infected with feline immunodefi-
ciency virus (28). Cu/Zn-SOD significantly inhibited HIV
replication (13). Cu/Zn-SOD inhalation protected murine
lungs against pulmonary emphysema by decreasing ROS
levels and proinflammatory cytokines expression (26). A
limited-scale prospective double-blinded controlled trial
NCT04323228 is about to start recruiting to test the effect of
an antioxidant oral nutrition supplement in SARS-CoV 2
positive cases. All of these mentioned studies are preliminary
at best and may help lay the foundation for a more serious

effort testing whether lung-specific delivery of SOD3-related
antioxidants may work in synergy with promising antivirals
such as remdesivir (NCT04323761) to further improve
COVID-19 outcomes in the elderly.

Notes

Data acquisition

Primary single-cell RNA sequencing data were obtained
from the GEO database (accession no. GSE122960). Authors

FIG. 2. Downregulation of SOD3 and ATF4 in alveolar type II cells of lungs from elderly donors. (A) t-SNE plots
showing SOD3 and (B) ATF4 expression level between young and old age groups in (top) all the 14 clusters and (bottom) in
alveolar type II cells. (C) Heatmap of the downstream targets of ATF4. Rows represent genes and columns represent cells.
(D) Pathways enrichment for ATF4 downstream targets that are downregulated in elderly. Circles represent genes and
diamonds represent the enriched terms. ATF4, activating transcription factor 4; SOD3, superoxide dismutase 3.
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of the published study performed single-cell RNA sequencing
on eight healthy donor lungs and nine lungs from patients with
pulmonary fibrosis (20). Four samples were chosen from the
healthy donor lungs in which two of them were 57 and 63 years
old and the other two samples were from donors who were 22
and 29 years old. All four donors were females, nonsmokers,
and African American.

Processing of raw data and quality control

All analyses were performed using Seurat package (v.3.1.1)
in R (v.3.3.5) (22). The initial data set contained 20,163 cells
from four lung samples (two young and two elderly). Gene
expression values were log normalized using 10,000 tran-
scripts per cell as scaling factor. Canonical correlational
analysis was performed to integrate all four samples to identify
the shared cell types using the top 2000 highly variable genes.
Cells expressing <200 or >5000 genes, as detected, were ex-
cluded. Further filtering was performed to exclude cells that
contain >15% of their reads from mitochondrial encoded
genes. Cells with total number of counts between 2000 and
25,000 were kept for downstream analysis. After the filtration
step, 18,284 cells (9783 from elderly and 8501 from young
donors) were maintained for downstream analysis. Principal
component analyses were performed and the first 15 principal
components were chosen for clustering.

Determination of cell type identity

To identify cluster identity, SingleR package in R was used to
calculate the similarity between each cluster and the HPCA data
set (1). In addition, differential gene expression was performed
between each cluster and the rest of the cells to identify cluster
markers and further identification of the cluster identity using
known markers from the literature.

Differential gene expression analysis

Differential gene expression analysis was performed for
alveolar type II cells (cluster zero) to compare between
young- and old-age groups using Wilcox-Rank Sum test with
adjusted p-value <0.05. To avoid detection of genes only
altered in one sample of either group, four additional com-
parisons were performed (each sample with the two samples
from the other group). The genes that were not simulta-
neously upregulated or downregulated and in at least three
such comparisons were excluded.

Ingenuity upstream regulator analysis in IPA

IPA (23,24,29) was used to identify the cascade of
transcriptional regulators that can explain the observed
gene expression changes in the data set. This approach is
based on prior knowledge of expected effects between
transcriptional regulators and their target genes. Two sta-
tistical measures (an overlap p-value and an activation
z-score) were computed for each potential transcriptional
regulator. The activation z-score was used to infer likely
activation states of regulators based on comparison with a
model that assigns random regulation directions.

Pathways enrichment

Reactome database (10) was used for enrichment of ATF4
downstream targets that were found to be downregulated in
alveolar type II cells in the cells from the elderly.
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