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This editorial refers to an article by S. Roy et al.1 published in
Cardiovascular Research in 2009 (see Box 1). It is accompan-
ied by an editorial by J. Bauersachs, pp. 227–229, this issue,
as part of this Spotlight on Landmark Papers in Cardiovascu-
lar Research.

This editorial celebrates the extraordinary citation of our recent publi-
cation1 in Cardiovascular Research highlighting the emerging significance
of miR-21 in the heart, particularly in the context of tissue injury, inflam-
mation, and remodelling. The work was first submitted to a leading car-
diovascular journal in January 2008. The submission was summarily
rejected, citing ‘paucity of novel mechanistic insight’. The work went
on to be published in Cardiovascular Research and has now been cited
150 times in 3 years, being recognized as one of the most highly cited
articles in the journal. Had the work been published in the original
journal it would have been published almost a year in advance and
would have today ranked third in citation score among all of nearly
300 articles published in that journal in 2009. Here, we briefly review
the progress in the field since our original work was published.

1. Heart miR-21: yes, it is a
validated therapeutic target
Identified as one of the first mammalian microRNAs (miRs), the
miR-21 sequence is strongly conserved throughout evolution.
During the early phase of development of miR-21 biology, most of
the target coding genes reported were tumour suppressors. Thus,
miR-21 represents one of the first ‘oncomirs’ named. Two concurrent
works1,2 published by the Engelhardt laboratory2 and us1 markedly
changed the landscape by introducing the cardiac fibroblast as a
major hub for miR-21 action. Taken together, these studies drew at-
tention to the role of miR-21 in cardiovascular diseases.1 –12 Today,
miR-21 is recognized as playing an important role in the development
of heart disease. miR-21 expression is upregulated in failing murine
and human hearts.1,2 Induction of miR-21 by ischaemic precondition-
ing protects the heart against ischaemia/reperfusion injury.6

Could ischaemia/reperfusion-induced expression of miR-21 that we
had reported be functionally futile in the heart? Indeed, a report pub-
lished in 2010 concluded that miR-21 is not essential for pathological
cardiac remodelling.11 This conclusion went against the grain of both ori-
ginal independent studies.1,2 So, where is the disconnect? Interestingly, the
study of miR-21-deficient mice concluded that miR-21 plays no role in
cardiac disease.11 Supporting data arguing against the significance of
miR-21 in heart disease were provided by studies using very short, 8-
nucleotide anti-miR-21 oligonucleotides.11 Genetic deletion of a target
is commonly recognized to be compensated for during development.
Therefore, this approach is limited in its ability to rule out miR-21 as a
key determinant of heart function. However, the contrast in outcomes
of the therapeutic trials using long2 vs. short 8-mer11 oligonucleotides
was striking. To address this inconsistency, the Engelhardt laboratory con-
ducted a direct head-to-head comparison of three different oligonucleo-
tide chemistries in the same model of cardiac disease.13 Findings from
such studies dispelled the false alarm10 and upheld the significance of
miR-21 in cardiac disease by demonstrating that results from the use of
8-mer anti-miR-21 are of limited significance because the 8-mer is inef-
fective in suppressing miR-21 on a long-term basis. The study concluded
that for long-term inhibition of miR-21 function in vivo, interventions
based on longer anti-miRs are likely to prove to be superior due to
their high potency and treatment duration.13 Dispute and resolution
aside, current work employing next-generation sequencing technologies
for comprehensive murine cardiac miRNA and mRNA expression profil-
ing in mouse left ventricle reinforces the significance of attenuating
miR-21 expression in improving cardiac fibrosis and limiting pathological
hypertrophy.14

2. miR-21: a trigger for fibrosis
across organ systems
In response to tissue injury, aberrant extracellular matrix production
by resident fibroblasts causes fibrotic diseases across organ systems.
Both original publications introducing miR-21 to cardiac biology1,2

pointed towards the fibroblast as a major locus of miR-21 action. In
both studies, elevated miR-21 was connected to fibroblast dysfunction
and fibrosis outcome. We reported the first evidence describing
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changes in miR expression in response to ischaemia/reperfusion in the
murine heart, demonstrating that miR-21 regulates matrix
metalloprotease-2 (MMP-2) expression in cardiac fibroblasts of the
infarct zone via a phosphatase and tensin homologue (PTEN)
pathway. Tissue elements laser-captured from the infarct site
showed marked induction of miR-21 in fibroblasts. In situ hybridization
studies using a locked nucleic acid miR-21-specific probe identified that
ischaemia/reperfusion-inducible miR-21 was specifically localized in the
infarct region of the reperfused heart. Studies with isolated cardiac
fibroblasts identified PTEN as a direct target of miR-21. A marked de-
crease in PTEN expression was observed in the infarct zone. This de-
crease was associated with increased MMP-2 expression in the infarct
area.1 Our observation that miR-21 silences PTEN in the infarcted
heart is now known to have additional implications.
Endothelial-to-mesenchymal transition (EndMT) is emerging as a sig-
nificant contributor to transforming growth factor-b (TGF-b)-
dependent cardiac fibrosis. miR-21 contributes to, at least in part,

TGF-b-mediated EndMT in the heart via silencing of PTEN.15 Thum
et al.2 demonstrated that miR-21 regulates the ERK–MAP kinase sig-
nalling pathway in cardiac fibroblasts. miR-21 levels were noted to
be specifically upregulated in fibroblasts of the failing heart, augmenting
ERK–MAP kinase activity through inhibition of sprouty homologue 1
(Spry1). In this way, miR-21 contributed to cardiac fibrosis.2 The sig-
nificance of miR-21 in causing fibrosis seems to transcend the heart
as an organ. In mice with bleomycin-induced pulmonary fibrosis as
well as in the lungs of patients with idiopathic pulmonary fibrosis,
miR-21 is elevated.16 Here again, miR-21 expression was primarily
localized to myofibroblasts. Even when the intervention was per-
formed 5–7 days after the initiation of pulmonary injury, suppression
of miR-21 diminished the severity of experimental lung fibrosis in mice.
Interestingly, TGF-b1, a common driver of fibrotic response across
organ systems, induced miR-21 expression in primary pulmonary fibro-
blasts. Importantly, miR-21 was recognized as being the mediator of
pro-fibrogenic activity of TGF-b1 in fibroblasts. miR-21 regulates the

Box 1 Title page including abstract from the original 2009 publication in Cardiovascular Research.1 Used with permission of Oxford University Press
on behalf of the European Society of Cardiology.
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Smad pathway. Boosting miR-21 levels enhanced, whereas knocking
down miR-21 attenuated, Smad2 phosphorylation in response to
TGF-b1 stimulation. Furthermore, Smad7 is a direct target of
miR-21. Smad7 plays an essential role in the negative-feedback regula-
tion of TGF-b signalling by inhibiting TGF-b signalling at the receptor
level. Silencing of Smad7 by miR-21 may therefore support fibrogenic
effects of TGF-b1.16 miR-21 is also implicated in vascular remodel-
ling.17 This effect is partly mediated via silencing of programmed cell
death 4 (PDCD4). Inhibition of miR-21 reversed vascular remodelling
induced by balloon injury.17 In the skeletal muscle, fibrosis is directly
implicated in the death of patients suffering from Duchenne muscular
dystrophy. Recently, it was demonstrated that extracellular plasmino-
gen activator inhibitor-1 (PAI-1)/urokinase-type plasminogen activator
balance regulates miR-21 biogenesis. In addition, it controls
age-associated muscle fibrosis and progression of dystrophy.
Age-associated fibrogenesis was successfully intercepted by miR-21 in-
hibition, whereas miR-21 overexpression aggravated the severity of
disease. The PAI-1-miR-21 fibrogenic axis is recognized as a target
to treat fibrosis and muscular dystrophies.18 In the kidney, fibrosis is
a final stage of many forms of disease leading to compromised organ
function. Unilateral ureteral obstruction (UUO)-induced renal fibrosis
is associated with changes in expression of miRNAs that are respon-
sive to stimulation by TGF-b1 or TNF-a. Among these miRNAs,
miR-21 demonstrated the greatest increase in UUO kidneys. Inhibition
of miR-21 in vivo attenuated UUO-induced renal fibrosis, pointing
towards a causative role of miR-21.19

3. Anti-inflammatory macrophage
miR-21
Successful mounting of a pro-inflammatory response and timely reso-
lution of inflammation are both required for successful wound
healing.20–22 Macrophages are immune cells involved in various biologic-
al processes including tissue repair and host defense. The first evidence
supporting the significance of miRNA in governing macrophage function
was published in 2007 when profiling studies were performed to identify
miRNAs induced in primary murine macrophages after exposure to
pro-inflammatory conditions. miR-155 was recognized as a common
target of a broad range of inflammatory mediators.23 Ever since, interest
in understanding the role of miRNA in regulating the inflammatory re-
sponse to injury has sharply risen.24–26 In one of the first works that
reported the anti-inflammatory properties of miR-21 in macrophages,
it was noted that miR-21 silences pro-inflammatory interleukin
(IL)-12.27 The IL-12 family is composed of three heterodimeric cytokines
with overlapping pro-inflammatory and immunoregulatory functions.28

In human airway epithelial cells, IL-13 induces miR-21. In the lungs,
miR-21 inhibits toll-like receptor 2 agonist-induced lung inflammation
in mice.29 Resolvins, including D and E series resolvins, are endogenous
lipid mediators generated during the resolution phase of acute inflamma-
tion from the omega-3 polyunsaturated fatty acids docosahexaenoic acid
and eicosapentaenoic acid.30 miR-21 is inducible by resolvin D1 and may
play a role in resolving acute inflammation.31 PDCD4 has pro-inflamma-
tory properties. Translational inhibition of PDCD4 by miR-21 therefore
has anti-inflammatory consequences in the context of sepsis.32

Beyond its direct effects on macrophages, miR-21 has a list of bio-
logical targets validated in a variety of cell types that point to hypoth-
eses that could provide additional anti-inflammatory mechanisms.
Analysis of predicted target genes of miR-21 on the basis of resources

available in TargetScan4.0, PicTar, and miRanda resulted in the identi-
fication of a total of 930 candidates.33 Additional characterization of
these candidates through target-pathway analysis pointed towards
the following two specific signalling pathways that are significantly
(P , 0.01) regulated by miR-21: (i) Janus kinase (JAK) and signal trans-
ducer and activators of transcription (STAT) signalling pathway (target
count ¼ 16; CSF3R, SPRY2, IL23R, CNTFR, IL15, IL7, IL13RA1,
STAT3, SOS2, SPRY1, PIK3R1, LIFR, IL9, JAK3, IL12A, IL13RA2); (ii)
cytokine–cytokine receptor interaction (target count ¼ 20; CSF3R,
SPRY2, IL23R, CNTFR, IL15, IL7, IL13RA1, STAT3, SOS2, SPRY1,
PIK3R1, LIFR, IL9,JAK3, IL12A, IL13RA2).33 Collectively, these path-
ways represent the core of the cytokine response system. Dysregula-
tion of cytokine signalling is known to be a root cause of inflammation.
From a therapeutic standpoint, targeting cytokine networks is viewed
as a promising strategy to control chronic inflammatory diseases.34

JAK/STAT signalling helps elicit transcriptional response to external
stimuli.35 Specifically, it directly links ligand binding to a membrane-
bound receptor with the activation of a transcription factor. Cyto-
kines specifically bind to their corresponding receptors, leading to
the activation of receptor-associated JAKs. The receptor-bound
JAKs activate STAT transcription factors that translocate into the
nucleus to induce target gene expression. JAK-STAT signalling is dir-
ectly implicated in cytokine-mediated inflammation.36,37 Inhibition of
this pathway by small compounds is recognized as a potential thera-
peutic target for various inflammatory diseases.38 The silencing
effects of miR-21 on the JAK-STAT pathway may be utilized as an anti-
inflammatory strategy.

miR-21 may exercise anti-inflammatory effects also through silencing
of PTEN. Myeloid PTEN is known to promote inflammation.39 Further-
more, PTEN silencing strengthens PI3K-Akt signalling, which is known to
suppress inflammation.40–42 Akt is also known to coordinate macro-
phage transitions and resolution of inflammation during tissue repair.43

DOCK (dedicator of cytokinesis) guanine nucleotide exchange factors
activate the Rho-family GTPases Rac and Cdc42 to control phagocytosis.
Phagocytosis, in addition to clearance of unwanted cells, may influence
inflammatory outcomes.44,45 miR-21 may thus influence phagocytosis
and inflammation through silencing of DOCK.46 MCP-1, a key driver
of inflammation, is also a biologically validated target of miR-21.47 Silen-
cing of MCP-1 represents a potentially influential mechanism that can be
added to the anti-inflammatory mechanisms of miR-21. Although in
endothelial cells macrophage miR-21 may possess pro-inflammatory
functions,48 macrophage miR-21 plays a key role in the resolution of in-
flammation. In specific cases, pro-inflammatory stimuli are reported to
induce miR-21,49 leading to the hypothesis that inflammation is initiated
with a built-in provision to resolve. In support of this hypothesis, it is
noted that activation of NF-kB, a major driver of inflammation, leads
to the induction of anti-inflammatory miR-21.50 Induced miR-21 may
exert anti-inflammatory properties by suppressing NF-kB signalling.51

Likewise miR-21 is also induced by TNFa, a landmark pro-inflammatory
cytokine.52 Further studies on macrophage miR-21 are likely to shed new
light on the resolution of inflammation.

4. Conclusion
miR-21 has established itself as a key regulator of fibroblast function
with potent implications in tissue injury and inflammation. miR-21
plays an important role in the pathogenesis of heart disease, making
it a therapeutic target. In macrophages, miR-21 seems to play a
major role in helping resolve inflammation. Understanding of such
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cell-specific functions of miR should help develop effective miR-based
therapeutic strategies.
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