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Abstract

Significance: Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular
system. It is required for physiological processes such as developmental biology and wound healing. Angio-
genesis also plays a crucial role in pathological conditions such as tumor progression. The underlying im-
portance of angiogenesis necessitates a highly regulated process. Recent Advances: Recent works have
demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called mi-
croRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound
effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. Critical
Issues: In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of
angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Down-
regulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary
for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. Future
Directions: New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-
200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physi-
ological conditions. Antioxid. Redox Signal. 22, 1257–1272.

Introduction

Angiogenesis

Angiogenesis is a derivative of the Greek words ‘‘an-
geio,’’ meaning blood vessel, and ‘‘genesis,’’ meaning

production. It is the process by which new blood vessels
develop from a pre-existing vascular system. It is required for
embryonic development, physiological processes, such as
wound healing and corpus luteum formation, as well as in
pathological processes, such as tumor progression. It is
transiently induced and then subjected to regression ap-
proaching tissue homeostasis. Such a regulation of angio-
genesis is often dysfunctional under pathological conditions.
For example, in rheumatoid arthritis, new blood capillaries
invading the joint do not regress. Lack of regression of an-
giogenesis after induction is also noted in diabetes where
hypervascularization of the retina invades the vitreous hu-
mor, causing bleeding, and blindness (38). Dysregulated
angiogenesis is also a characteristic of ischemic heart disease,
peripheral vascular disease, and preeclampsia (14).

Under physiological conditions, angiogenesis is finely
regulated. Typically, normal angiogenesis occurs in the em-
bryo, where it establishes the primary vasculature for grow-
ing and developing organs (38). Angiogenesis occurs in the
adult during the ovarian cycle and in physiological repair
processes such as wound healing (70). Lack of regulation of
angiogenesis leads to pathological conditions. Healing of
larger wounds depends on wound angiogenesis (108). Cuta-
neous wound healing is a multi-stage process that orches-
trates the reconstitution of the defective dermal and
epidermal layers of the skin. During the proliferative phase,
the wound microvasculature is reconstructed to re-establish
the nutrient supply to regenerating tissue, promote fi-
broplasia, and prevent sustained tissue hypoxia. Failure to do
so will disallow tissue growth (44). Induction of angiogenesis
enhances healing rate, particularly under conditions such as
diabetes, where peripheral blood supply is limited. Seminal
works by Dr. Judah Folkman have helped us to understand that
tumor formation is dependent on angiogenesis (37). Angio-
genesis plays a pivotal role in tumor growth, progression,
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invasiveness, and metastasis (31). For tumors to develop in
size and metastatic potential, they must make an ‘‘angiogenic
switch.’’ Angiogenesis is thought to be driven largely by
hypoxia in tumors and is particularly relevant to metastatic
spread, as primary tumor cells enter the circulation via these
new blood vessels (40). Further, the endothelial angiogenic
cells can enhance the invasive and metastatic potential of
cancer cells (59, 137). Studies showed that in vitro co culture
of endothelial cells (ECs) with prostate cancer cells resulted in
TGF-b/MMP-9 signaling, leading to increased invasion of
prostate cancer cells (137). Moderate hypoxia serves as a
productive micro-environmental cue, causing the induction of
key angiogenic cytokines such as the vascular endothelial
growth factor (VEGF-A) (26). Thus, moderate hypoxic
conditions are present in tumors, developing embryo and
during the initial stages of wound healing driving angiogenesis
(131).

Wound angiogenesis can be studied by emerging nonin-
vasive imaging technologies. Laser speckle provides infor-
mation regarding blood perfusion in a 2D area; ultrasound
provides information regarding the wound depth and angio-
genesis; whereas the healing can be monitored by tissue

elastography (43) (Fig. 1). These tools have enabled the re-
peated study of the healing tissue without the need for bi-
opsies, providing unprecedented insights into the dynamics
of cutaneous wound angiogenesis.

Angiogenesis, vasculogenesis, and vascular mimicry refer
to development of new blood vessels; each process is phys-
iologically distinct from the other. Angiogenesis comprises
of two mechanisms: endothelial sprouting and intussuscep-
tive microvascular growth. In the initial step of angiogenesis,
ECs start migrating and proliferating (105). Therefore, at the
onset of angiogenesis, regulators associated with blood vessel
homeostasis need to be transiently suppressed. Indeed, tran-
sient disruption of the integrity of cell-to-cell binding is re-
quired to induce angiogenesis (133). Vasculogenesis refers to
in situ differentiation and growth of blood vessels from
mesodermal-derived hemangioblasts. Vasculogenic mimicry
is a process in which highly aggressive and metastatic can-
cerous cells are able to form highly patterned vascular
channels that are lined externally by tumor cells, without the
requirement of ECs (89). Blood vessel development through
any of these processes requires the process of epithelial–
mesenchymal transition (EMT).

FIG. 1. Noninvasive techniques
to study angiogenesis post-
wounding. Images depict porcine
burn wound at day 14 (early time
point) and day 42 (late time point).
(A) Laser speckle image showing
blood perfusion in wound area. The
dashed rectangle in laser speckle
image represents the initial wound
area. Scale bar indicates the gradi-
ent from high to low perfusion. (B)
The wound depth and blood vessels
can be visualized from the three-
dimensional ultrasound image (43).
The feeder blood vessels are in red.
The scale bar indicates the gradient
of in flow and out flow of blood.
(C) The healing of wound can be
accessed by elastography. The
scale bar indicates the hardness and
softness of tissue. The region
within the arrows represents wound
bed. To see this illustration in col-
or, the reader is referred to the web
version of this article at www
.liebertpub.com/ars
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EMT is a reversible dedifferentiation process that leads
epithelial cells to dedifferentiate, generating cells with mes-
enchymal features. Epithelial cells lose cell polarity, cell-to-
cell contact and gain migratory and invasive characteristics.
This process is characterized by the loss of epithelial traits and
the acquisition of mesenchymal phenotypes (62, 130). Main-
tenance of healthy tissue is dependent on a fine balance be-
tween pro-growth and growth arrest factors. In case of tissue
insult or during a pathogenic condition, these breaking
mechanisms transiently disengage themselves. One such
breaking mechanism is afforded by microRNAs or miRs,
which confer post-transcriptional silencing of gene expression.

microRNAs

MicroRNAs (miRNAs/miRs) are short noncoding RNAs
of *21–23 nucleotides in length. The database of miRNAs,
miRBase, enlists 35,828 mature miRNA sequences across 223
species with 2588 miRNAs in human [miRBase (46); Version
21]. miRs are primarily involved in post-transcriptional gene
silencing. They bind to target mRNA transcripts, leading to
translational repression or degradation of mRNA transcripts.
This pairing between miR and mRNA is usually of partial
complementarity, resulting in a single miR targeting numerous
mRNA transcripts. A single miR, on an average, is predicted to
target around 200 mRNA transcripts (73). What makes this
regulatory network even more interesting is the observation
that a single mRNA is targeted by more than one miR de-
pending on the length of the 3¢-UTR of the mRNA.

miR genes are transcribed by RNA polymerase II or RNA
polymerase III into primary miRNA transcripts (pri-miRNA)
(10, 78). On transcription, primary miRNAs fold into hair-
pins. miRNA hairpins are reported to be different from the
hairpins found in mRNAs and other types of noncoding
RNAs (95). Based on their genomic position, they are either
located in the form of independent genes, referred to as in-
tergenic miRs, or situated in introns of protein coding genes,
referred to as intronic miRs. It is often assumed that intronic
miRs are processed from spliced introns. However, in certain
cases, the miR hairpin are actually cleaved first, followed by
splicing of the severed mRNA (68). The intronic miRs are

reported to be co-transcribed with their host protein coding
genes. Thus, intronic miRs are co-regulated with the cod-
ing genes. Intergenic miRs are regulated independently of
other genes. Unlike protein coding genes and similar to some
tRNA genes, miRs might be transcribed together; these miRs
are termed clustered miRs. Clustered miRs can be intronic or
intergenic. After transcription, these miRs are then individ-
ually processed.

miRs transcribed by RNA POL II are 5¢ capped and
polyadenylated. The RNase III enzyme Drosha and the
double-stranded RNA-binding domain (dsRBD) protein Di-
George syndrome critical region gene 8 (DGCR8, Pasha in
Drosophila melanogaster) form the nuclear microprocessor
complex that recognizes the stem loop structure of the pri-
miRNA and cleaves at the stem of the hairpin, thus producing
an approximately 70 nt stem loop miR precursor (pre-
miRNA). Exportin-5 in complex with Ran-GTP then trans-
ports the pre-miRNA to the cytoplasm (150). Exportin-5
recognizes the pre-miRNA independent of its sequence or the
loop structure. A defined length of the double-stranded stem
and the 3¢ overhangs are important for successful binding to
Exportin-5, ensuring the export of only correctly processed
pre-miRNAs (86). A schematic representation of the miR
biogenesis has been shown in (Fig. 2).

Some of the intronic miRs are believed to bypass the pri-
miRNA stage and emerge straight as pre-miRNAs not re-
quiring the Drosha processing step. Such intronic miRs are
termed mirtrons. In a conventional mirtron locus, the resul-
tant small RNAs begin and end precisely with splice donor
and splice acceptor sites. In other words, both ends of the pre-
miRNA are generated by the splicing reaction. Mirtrons were
originally recognized in flies and worms, but similar loci (i.e.,
short hairpin introns associated with small RNA arising from
introns) were later found in rodents, primates (3, 8), chicken
(42), and rice (153).

On reaching the cytoplasm, another RNase III enzyme
termed Dicer generates a 21–25 nt long miR duplex inter-
mediate with 5¢ phosphates and 2 nt 3¢ overhangs, referred to
as miRNA/miRNA* (miRNA star). For functional activity,
the double-stranded duplex is separated using helicase as-
sociated with the RISC complex into the functional guide

FIG. 2. miRs are transcribed in the nucleus by RNA Polymerase II/III. The initial transcript (pri-miRNA) is processed
in the nucleus by RNA endonuclease Drosha to form pre-miRNA. Pre-miRNA is exported to the cytosplasm where it is
cleaved by Dicer to form mature miRNA and subsequently loaded on to RISC complex for its function. The RNA-induced
silencing complex (RISC) comprises argonaute (AGO), Tar RNA-binding protein (TRBP), and other proteins. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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strand. This strand is complementary to the target mRNA
transcript. The other strand called the passenger strand is
subsequently degraded. Following the thermodynamic asym-
metry rule (64, 113), one strand of the intermediate double-
stranded RNA, typically with a relatively lower stability of
base pairing at the 5¢ end, is incorporated into RISC complex
by binding of the miRNA to a member of the Argonaute
protein family. The opposite strand, the miRNA*, is degraded;
however, there are also reports of functional miRNA* se-
quences, especially under distinct cellular conditions and in
different tissues (54, 114). In some cases, both the strands are
retained and are incorporated into the RISC complex; in such
cases, miRNA arising from 5¢-end of the precursor miRNA
(pre-miRNA) is termed miRNA-5p and that arising from
3¢-end of the pre-miRNA is termed miRNA-3p.

Within the RISC complexes, miRs guide Argonaute pro-
teins to fully or partially complementary miR targets, which
are then silenced post-transcriptionally. The mechanism of
translational repression by miRs can be mediated through
ribosomal dropoff during translation, translational initiation
blockage, decapping of mRNA, or degradradation of mRNA
transcript (32) (Fig. 3).

microRNAs in angiogenesis

Significance of miR in the regulation of mammalian vas-
cular biology was established from studies involved in
blocking miR biogenesis to deplete the miR pools of vascular
tissues and cells (74, 127). In 2008, our group first reported on
the regulation of angiogenesis by miRs (123) and since then,
we have studied how miRs regulate wound healing (6, 9, 16,
27, 106, 107, 117, 122) and angiogenesis (17–19, 108, 115,
116, 123). The class of miR is often designated by prefixing
its function to miR. For example, oxymiRs are miRs dysre-

gulated in response to the state of tissue oxygenation (118).
Similarly, miRs that collectively act on pathways modulating
angiogenesis are collectively referred to as angiomiRs.

Dicer represents a key enzyme involved in miR biogenesis
(60). Early embryonic lethality, observed in dicer knockout
mice, has been suggested to be a consequence of defective
blood vessel formation and maintenance. This observation
underscores the fact that post-transcriptional gene silencing
using miRs is required for angiogenesis. miRs can influence
angiogenesis by regulating angiogenic growth factors, pro-
moting cell migration. As explained in the previous sections,
the regulation by miRs takes place at the translational level
by regulating the translation of mRNAs of angiogenic fac-
tors. In the initial stages of embryonic development, the ex-
pression of dicer remains low. As the embryo grows,
regulation and synchronization of various genes becomes
important, and, hence, the endogenous braking mechanism of
miRs sets in with dicer expression. The dicer gene is sig-
nificantly expressed throughout the mouse embryonic tissues
as early as day 11 and remains constant through day 17 (146).
Starting from embryonic day 11.5, virtually all homozygous
dicer knockout embryos were found to be growth retarded
and underdeveloped as compared with their wild-type or
heterozygous litter mates. The embryos that were still viable
at this stage, however, had thin and sub-optimally developed
blood vessels. This observation supports the fact that miRs
are required for blood vessel development during embryo-
genesis (146). Dicer-null zebrafish embryos exhibit severe
defects most prominently in gastrulation, brain morphogen-
esis, and cardiac development associated with a disrupted
blood circulation (41, 141). Angiogenesis during fetal de-
velopment and in adult dermal wounds shares a common
platform based on their miR expression pool. The expression
level of miRs in the wound edge tissue during the initial stage
of healing is lower compared with that in the post-healing
phase. Low miR abundance facilitates angiogenesis during
the development as well as repair phase (Fig. 4).

miRs involved in angiogenic pathways can be broadly
classified into two types, that is, pro-angiogenic miRs and anti-
angiogenic miRs (Table 1). The pro-angiogenic miRs assist in
the process of angiogenesis by desilencing angiogenic growth
factors, promoting cell migration and EMT. However, anti-
angiomiRs antagonize these events. It has to be cautiously
noted that both these classes are equally important in ensuring
healthy angiogenesis. During initial stages, the levels of anti-
angiogenic miRs are repressed and levels of pro-angiogenic
miRs are elevated so that the process of angiogenesis can re-
sume. In the later phase, once blood vessels are formed, the pro
angiogenic miRs go down and anti-angiogenic miRs revert to
prevent uncontrolled angiogenesis and establish homeostasis.

miRs belonging to miR-17*92 cluster and miR-126 are
known to promote angiogenesis. miR-126 is a key positive
regulator of angiogenic signaling in ECs and of vascular in-
tegrity in vivo (36, 75, 136). Knockdown of miR-126 during
zebrafish embryogenesis or deletion of miR-126 in mice re-
sulted in defects in vascular development. miR-126 mutant
mice displayed diminished angiogenesis and increased
mortality after coronary ligation, a model for myocardial
infarction (136). ECs deficient in miR-126 failed to respond
to angiogenic factors, including VEGF-A, epidermal growth
factor (EGF), and basic fibroblast growth factor (bFGF) (36,
75, 136). miR-126 functions by directly repressing negative

FIG. 3. Mechanism of translational repression by
miRs. miRs bound to RISC complex on pairing with mRNA
could lead to ribosomal drop-off, translational initiation
blockage or decapping or degradation of mRNA. To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars

1260 SINHA ET AL.



regulators of the VEGF pathway, including the Sprouty-
related protein SPRED1 and phosphoinositol-3 kinase regu-
latory subunit 2 (PIK3R2/p85-beta) (75). The clusters of
miRNAs miR-17 through miR-92 (miR-17–92), which are
transcribed as a polycistron that is stimulated by Myc, exert
their proangiogenic effect by targeting the secreted factors,
namely thrombospondin 1 (TSP1) and connective tissue
growth factor, both of which inhibit angiogenesis.

On the other hand, examples of anti-angiogenic miRs in-
clude miR-24. miR-24 inhibit angiogenesis by targeting of
the endothelium-enriched transcription factor GATA-2 and
the p21-activated kinase PAK4 (35). AntagomiR are syn-
thetic RNA molecules complementary to an miRNA of in-
terest. AntagomiR binds to miRNA and prevents it from
binding to its target mRNA. Systemic use of antagomiR
against miR-24 in the mouse ischemic myocardium resulted
in improved myocardial angiogenesis and cardiac function.
The anti-angiogenic miR-100 also regulates the vascular
response to myocardial infarction. miR-100 expression is re-
duced in mouse ischemic muscles, further antagomiR-
mediated miR-100 inhibition showed a therapeutic potential.
miR-100 reduced mTOR expression and, consequently, at-
tenuated cellular proliferation (47). More pro- and anti-
angiomiRs have been detailed in Table 1. In this work, we
review the role of anti angiogenic miR-200b and its impor-
tance as a regulator of inducible adult angiogenesis. One of
the areas in angiogenesis that has seen significant develop-
ment in recent years has been the study of post-transcriptional
gene regulation of miRNAs, and temporal regulation of miR

to fine tune angiogenic pathway has drawn surging attention.
Recents reports on the role of miR-200b in tumor angio-
genesis and wound angiogenesis have greatly expanded our
view on the overall regulation of angiogenic pathways.

miR-200b Is Transiently Turned Down to Switch
on Inducible Wound Angiogenesis

miR-200b belongs to the miR-200 family that is organized
into two groups based on a single nucleotide difference in
their seed sequence (group A: miR-141 and -200a; group B:
miR-200b, -200c, and -429). In human, the miR-200 family
is transcribed from two chromosomal clusters: miR-200b/a/
429 from chromosome 1, and miR-200c/141 from chromo-
some 12. The mature miR-200b arises from the 3¢- arm of
pre-miR-200b. The miR is conserved across many species,
including human and mouse (Fig. 5). It is anti-angiogenic
and, thus, its expression must be silenced to initiate inducible
angiogenesis (17). Downregulation of endothelial miR-200b
helps in cutaneous wound angiogenesis (19). Injury tran-
siently suppresses miR-200b expression for angiogenesis to
occur postwounding. Inability to suppress miR-200b ex-
pression leads to impaired angiogenesis (Fig. 6). EMT has
been reported to contribute to the formation of angiogenic
blood vessels. miR-200b draws extraordinary significance, as
it can target the transcription factors involved in EMT.
Dysregulation of miR-200b has been described as playing
a critical role in the EMT and metastasis in cancers such
as breast, gastric, and pancreatic carcinomas. Moreover,

FIG. 4. Angiogenesis dur-
ing fetal development and
in adult dermal wounds
shares a common platform
based on their miR expres-
sion pool. The expression
level of miRs in the wound
edge tissue during the initial
stage of healing is lower
compared with that in the
post-healing phase. Low miR
abundance facilitates angio-
genesis during development
as well as in the repair phase.
To see this illustration in
color, the reader is referred to
the web version of this article
at www.liebertpub.com/ars
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miR-200b can silence a number of angiogenic growth fac-
tors and its receptors by directly targeting their mRNA
transcripts (Fig. 7). Thus, miR-200b represents a critical
hub in the regulation of inducible adult angiogenesis.

Angiogenic Transcription Factors and miR-200b

miR-200b and GATA

GATA factors are zinc finger DNA-binding proteins that
control the development of diverse tissues by activating or
repressing transcription. GATA-1, GATA-2, and GATA-3
are reported as hematopoietic GATA factors (98). GATA-1
functions to promote erythrocyte, megakaryocyte, mast cell,
and eosinophil development and GATA-3 functions to pro-
mote specific aspects of T-cell lymphopoiesis (12). GATA-2
is uniquely essential for the genesis and/or function of he-
matopoietic stem/progenitor cells (12). GATA-2 is the most
abundantly expressed GATA factor in microvascular ECs
(125). GATA-2 is important in development of Flk-1 + /
Tal1 + hemangioblast-like cells and in the induction of en-
dothelial-specific genes (85). GATA-2 serves as a tran-
scriptional activator (29). Transcription factor GATA-2 binds
to the promoter of genes comprising GATA-2 binding ele-
ments, resulting in the transcriptional activation of the gene.

The miR-200b promoter contains multiple conserved
GATA-binding sites (148). Occupancy of such sites by
GATA-3 suppresses expression of miR-200b (148). GATA-3
binds directly to the promoter region of the miR-200b-200a-
429 cluster in human H322 lung cancer cells. It is to be noted
that miR-200b directly targets GATA-2, GATA-3, and

GATA-6, thus forming a feedback loop (19, 147, 148).
Overexpression of GATA-2 in ECs rescued the angiostatic
effect of miR-200b in vitro. Downregulation of miR-200b
derepressed GATA-2 expression to switch on wound angio-
genesis, which was disrupted in diabetic wounds. We have
reported that sustained presence of tumor necrosis factor-a
(TNF-a), a pro-inflammatory cytokine, caused loss of endo-
thelial GATA-2 (19). Treatment of ECs with TNF-a, abun-
dant in diabetic wounds, induced miR-200b expression,
silenced GATA-2, and suppressed angiogenesis (19). The
diabetic tissue, thus, seems to be resistant to inducible adult
angiogenesis. The interaction of miR-200b with GATA has
been shown in Figure 8.

GATA-4 is an important transcription factor involved in
several developmental processes of the heart, such as cardiac
myocyte proliferation, differentiation, and survival. Normal
and infarcted hearts treated with GATA-4 showed a signifi-
cant increase in myocardial capillary density, indicating that
GATA-4 regulates angiogenesis in the adult heart and, when
upregulated, is sufficient to induce formation of new capil-
laries (111). Overexpression of miR-200b leads to the
downregulation of GATA-4 mRNA and a decrease in
GATA-4 protein levels (149).

miR-200b and ZEB

The ZEB family comprises two proteins, ZEB1 and ZEB2.
ZEB1 is a trans-repressor supporting anti-apoptotic response
(83, 88, 129). ZEB1 knockdown induced apoptosis in human
lung cancer cell line, H460 cells. Further, ZEB1 knockdown

Table 1. List of AngiomiRs and Their Validated Targets

AngiomiR Function Target Reference

Pro-angiogenic
1 miR-126 Maintains vascular development,

regeneration, and integrity Spred-1
PIK3R2/p85-b,

VCAM-1
(36, 49, 75, 132)

2 miR-17–92
cluster

Promotes tumor angiogenesis TSP-1, CTGF,
TIMP-1, HIF-1a

(30, 99, 128)

3 miR-130a Regulates angiogenic phenotype
of endothelial cells Homeobox gene

GAX, HOXA5 (22)

4 miR-210 Promotes endothelial cell migration
and capillary-like structure formation

Ephrin-A3, HIF-1a (33, 102)

5 miR-378 Promotes tumor angiogenesis SuFu, Fus-1 (77)
6 miR-296 Promotes EC migration and tube formation,

and tumor angiogenesis
HGS (145)

Anti-angiogenic
8 miR-24 Reduces vascular response to myocardial infarction mTOR (35)
9 miR-100 Reduces myocardial angiogenesis postinfarction GATA2 and PAK4 (47)

10 miR-200b Inhibits epithelial-to-mesenchymal transition, targets
angiogenic cytokines and transcription factors

VEGF, VEGF-R1,
VEGF-R2, ZEB-1,
ZEB-2

(11, 19, 25, 45, 109)

11 miR-221/
miR-222

Inhibits EC migration, proliferation c-kit, eNOS (80, 126)

12 miR-328 Reduces formation of capillary structure CD44 (124)
13 miR-15b/

miR-16
Induces cell apoptosis VEGF, Bcl-2 (48, 56)

14 miR-20a/
miR-20b

Targets VEGF VEGF (56)

15 miR-320 Inhibition of miR-320 improves angiogenesis
in diabetic endothelial cells

IGF-1 (138)

16 miR-329 Targets CD 146-positive endothelial
cell-mediated angiogenesis

CD 146 (135)

1262 SINHA ET AL.



inhibited lung cancer cells (NSCLC) growth in soft agar
colony formation assay. However, the ability of transformed
cells to grow under anchorage-independent condition is the
most reliable predictor for tumorigenicity and metastatic
potential. Strong growth inhibitory effect of ZEB1 knock-
down in anchorage-independent condition suggests that
ZEB1 expression contributes to maintaining aggressive
phenotype of lung cancer cells (129). ZEB1 negatively reg-
ulates pathological angiogenesis by regulating endothelial
invasiveness by acting as a transcriptional attenuator of
matrix metalloproteinase 1 (MMP-1). ZEB1 also activates
R-Ras, another class of angiogenic regulator, to suppress
angiogenesis (57). Vascular expression of ZEB1 is compro-
mised in diabetics (104). More interestingly, miR-200b
downregulates the expression of ZEB1 and ZEB2 by inter-
acting with 3’-UTR of ZEB1 and ZEB2 mRNA (11, 45). The
miR-200 family is known to induce apoptosis (88, 112), and,
thus, this is mediated via ZEB1 silencing. The promoter re-
gion of miR-200b has two E-box motifs to which ZEB1 and
ZEB2 can bind. Binding of ZEB1/2 to the site suppresses the
expression of miR-200b, establishing a negative feedback
loop (11). These results also signify a double-negative
feedback loop between miR-200b and ZEB1/ZEB2, and they
allow the maintenance of the EMT phenotype.

miR-200b and p53

The tumor suppressor protein p53 has been shown to
negatively regulate angiogenesis. Wild-type p53 can repress
VEGF-A transcription in vitro (94). p53 repress VEGF-A
transcription by direct binding and sequestration of tran-
scriptional regulator SP1 and/or binding to the E2F tran-

scription factor, forming a transcriptional repressor complex
for VEGF-A expression (100, 103, 151). The other two p53
family members, p63 and p73, have a similar structure and
mechanism of regulation and are relevant regarding their
effect on angiogenesis. In cell lines that contain wild-type
p53, p73 seems to increase VEGF-A expression, exerting a
proangiogenic phenotype. The two major isoforms of p63,
TAp63c and dNp63a, have been shown to have opposite
effects on the VEGF promoter. Similar to p53, TAp63c re-
presses VEGF-A expression by interacting with HIF-1a and
mediating its proteasomal degradation. Conversely, dNp63a
seems to have a dominant-negative effect on p53 and TAp63c
and induces VEGF-A expression by stabilizing HIF-1a and
possibly contributing to the recruitment of p300/CBP to
promote target gene expression (119). The promoters of both
miR-200 chromosomal loci contain p53 family binding sites.
Chromatin immunoprecipitation with various members of the
p53 family show strong enrichment of p73 and p63 with the
miR-200b/a/429 p53 family binding site (71). Silencing p53
in diabetic wounds is known to improve wound closure and
angiogenesis (63, 96). p53 activation results in miR-200b
transactivation and expression (66). Thus, p53 can suppress
angiogenesis via a two pronged mechanism, including direct
repression of VEGF-A and also by increasing miR-200b
levels, which can, in turn, target VEGF-A.

miR-200b and NF-kB

NF-jB has been shown to respond to a variety of metabolic
stress signals, including hypoxia (110), which is necessary
for the process of angiogenesis to begin. Inhibition of NF-jB
activity decreased VEGF expression (121). Overexpression

FIG. 5. Chromosomal location and sequence of miR-200 family. The mature miR-200b is processed from the 3¢- arm of
pre-miR-200b. The sequence is conserved in mice and humans across members of the miR-200 family. The chromosomal location of
humans is shown in green, while that of mice is indicated in red. The seed sequence of miR-200 family members has been highlighted
in yellow. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 6. miR 200b expres-
sion in skin during prenatal,
postnatal, and adult stage.
Injury transiently suppresses
miR200b expression for an-
giogenesis to occur post-
wounding. The inability to
suppress miR-200b expression
in patho-physiological condi-
tions such as diabetes leads to
impaired angiogenesis. To see
this illustration in color, the
reader is referred to the web
version of this article at
www.liebertpub.com/ars
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of NF-jB contributes to VEGF-induced angiogenesis
through upregulation of VEGF-A mRNA expression in many
tumors. In vitro studies showed that overexpression of miR-
200b and miR-200c dampens NF-jB activity through the
TLR4-mediated pathway (139). Using luciferase reporter
assay of p65 subunit of NF-jB, the authors found miR-200b
and miR-200c reduced NF-jB activity. MyD88, which is
involved in the TLR4 pathway, was found to be the target of
miR-200b (139). The NF-jB pathway plays a critical role in
the induction of EMT induced by the overexpression of
platelet-derived growth factor (PDGF)-D in PC3 cells. The
loss of miR-200, especially miR-200b, is, in part, responsible
for the induction of EMT. It is well known that NF-jB plays
an important role in mediating the processes of EMT induced
by different factors through the upregulation of transcription
repressor function of ZEB1 and ZEB2, which, in turn, repress
the expression of miR-200 family by the binding to the E-box
sequence of the miR-200b promoter.

miR-200b and ETS

The Ets factor Ets-1 is enriched in the developing blood
vessels of the chicken, and antisense oligonucleotides have
been shown to inhibit angiogenesis when delivered to the
chicken chorioallantoic membrane (140). Ets-1 in tissues is
associated with increased expression of VEGF-A. Ets-1 reg-
ulates the expression of several downstream targets in ECs that
promote an angiogenic phenotype, including the VEGF re-
ceptors (VEGF-R1 and VEGF-R2), urokinase, and several
MMPs. Studies support a role for Ets-1 expression in the de-
velopment of tumor angiogenesis. In ovarian cancer, for ex-
ample, Ets-1 expression strongly correlates with the degree of
angiogenesis in the primary tumor and the development of
metastatic lesions [24]. Ets-1 is a key transcription factor that is
known to support angiogenesis. Pro-angiogenic stimuli such as
VEGF-A, angiotensin II, and FGF induce Ets-1 expression.
miR-200b targets Ets-1(17). Overexpression of Ets-1 reverses
the phenotypic changes caused by miR-200b mimics, further
supporting the notion that miR-200b inhibited the angiogenic
response via silencing of Ets-1. Cancer/testis antigen cancer-
associated gene (CAGE) is a member of Ets-family tran-
scription factors (24). CAGE is expressed in a variety of
cancers but not in normal tissues except for the testis (23).

Downregulation of CAGE leads to the decreased expression of
PAI-1, which is a TGF-b-responsive protein and is involved in
angiogenesis (67). PAI-1 is involved in retinal angiogenesis
and forms a member of VEGF-mediated angiogenesis as
VEGF-A induces PAI-1 expression. Furthermore, miR-200b
silences CAGE by binding to the 3¢-UTR of CAGE (67).

miR-200b and p300

p300 is a transcriptional co-activator that possesses in-
trinsic histone acetyltransferase activity (97). p300 also
drives a broad angiogenic transcription program that results
in the development of abundant blood vessels. HIF-1 is ac-
tivated by p300 and is an important transcriptional regulators
of VEGF-A (2). p300 levels also lead to the upregulation of
miRs that repress angiogenic transcription (120). miR-200
may regulate p300, a histone aceylator and transcription
coactivator in malignancies (55). In pancreatic ductal ade-
nocarcinoma, six p300 targeting miRNAs, including miR-
200b, were found to be downregulated in the highly meta-
static group (91). However, the molecular mechanism of
miR-200b-mediated p300 regulation is not known. Effects of
p300 are mediated by its capacity to control the expression of
a number of transcription factors (21). Such p300-mediated
action of miR-200b may potentially affect gene expression of
multiple vasoactive factors.

miR-200b Silences Angiogenic Growth Factors

miR-200b silences VEGF

VEGF plays an important role in the regulation of blood
flow and vascular permeability in angiogenesis. VEGF-A is
an important member of the VEGF family. The reduction of
VEGF-A diminishes vascularity and decreases scar forma-
tion in adult wounds (143). Although the underlying mech-
anisms remain obsure, VEGF-A may directly stimulate both
ECs and fibroblasts. VEGF-A receptors on fibroblasts are
responsible for induced proliferation of keloid fibroblasts
(144). VEGF-A exerts its biological activity predominantly
through transmembrane receptors linked to tyrosine kinase
domains. Many different cell types, fibroblasts, ECs, mac-
rophages, and keratinocytes are able to produce VEGF-A,
and mainly the latter two are responsible for the VEGF-A

FIG. 7. Schematic repre-
sentation showing miR-
200b downstream targets.
To see this illustration in
color, the reader is referred to
the web version of this article
at www.liebertpub.com/ars

1264 SINHA ET AL.



production during wound healing (7). Anti-VEGF strategies
inhibit the formation of granulation tissue in the wound (53),
indicating an important function of VEGF-A in angiogenesis
that occurs during the proliferative phase. Low oxygen ten-
sion (hypoxia), as occurs during tissue injury, constitutes a
significant inducer of the production of this growth factor (1).

In clear cell renal cell carcinoma, a strong negative cor-
relation is noted between expression of VEGF-A and the
miR-200 family (82). Employing ELISA and luciferase re-
porter assays, VEGF-A was validated to be a direct target of
miR-200b (25). Downregulation of miR-200b caused aber-
rant expression of VEGF in diabetic ECs. Delivery of miR-
200b mimic prevented diabetes-induced, VEGF-mediated
functional changes in the endothelial and retinal cells (90). In
addition, miR-200b mimic delivery downregulated endo-
thelial VEGF-A expression. Interestingly, blocking miR-
200b expression in diabetic wounds restored VEGF-A levels.
Finally, elevated miR-200b was associated with loss of en-
dothelial VEGF-A in human diabetic wound-edge tissue.

Although the VEGF-A gene is strongly induced by hyp-
oxia and cytokines at the level of transcription, it is also
regulated at the post-transcriptional level by RNA-binding
proteins and miRNAs such as AUF1, HuR, miR-15b, miR-
16, miR-20a/b, and miR-200b (20, 34, 56, 58). AUF1 is an
RNA-binding protein. AUF1 represses expression of VEGF-A
in macrophages by binding to its 3¢-UTR (34). Infiltration of
macrophages is essential for neovessel formation (51). Studies in
mice have shown that macrophages infiltrate and drill tunnels
using their proteolytic activity, which can serve as a scaffold
during neovascularization (93). The human (Hu) antigen R
(HuR) is a ubiquitously expressed member of the Hu family of
RNA-binding proteins (87). ARE elements on mRNA primarily
serve as the binding site for HuR. Binding of HuR to mRNA
leads to stabilization of mRNA (84). HuR directly binds to
VEGF-A mRNA (20, 69). In the absence of HuR, the basal
expression of VEGF-A mRNA and polypeptide was signifi-
cantly suppressed due to lack of mRNA stabilization by HuR. It
was observed that the Hur binding site and miR-200b binding

FIG. 8. Interaction between
miR-200b and GATA. (A)
Homeostatis, (B) during the
early stage of wound healing,
miR-200b is attenuated, which
leads to increased abundance
of GATA protein and facili-
tates angiogenesis, and (C)
during impaired wound heal-
ing, proinflammatory TNF-a
leads to induction of miR-
200b, which, in turn, sup-
presses GATA levels, thus
impairing angiogenesis. To
see this illustration in color,
the reader is referred to the
web version of this article at
www.liebertpub.com/ars
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site on VEGF-A 3-UTR overlap, thus HuR and the miR-200b-
RISC complex competitively regulate VEGF-A. The ability of
miR-200b to suppress VEGF-A expression was antagonized by
HuR. Importantly, more Ago-2-containing RISC complex was
associated with VEGF-A mRNA in the absence of HuR (20).
Post-transcriptional gene regulation by myeloid HuR is critical
in tumor angiogenesis. Subcutaneous implants in myeloid HuR
KO mice show compromised vascular density, vessel branching,
vascular leakage, and attenuated tumor growth, suggesting that
HuR promotes the pro-angiogenic phenotype in macrophages
that enhance tumor growth. HuR enhances angiogenesis by an-
tagonizing the anti-angiogenic effect of miR-200b in zebrafish
embryos (20). Thus, a complex interplay between RBPs and
miRNAs allow specificity, precision, and robustness of post-
transcriptional gene regulation.

Besides VEGF-A, its receptors VEGF-R1 and VEGF-R2
also play a vital role in angiogenesis. The VEGF-R1 receptor
is required for normal blood vessel development during
embryogenesis, since homozygous deletion of VEGFR-1 is
lethal in mice at embryonic day E8.5 due to severe mal-
formation of the vasculature (39). VEGFR-2 regulates EC
migration, proliferation, differentiation and survival, as well
as vessel permeability and dilation (13).VEGF-R2 is found in
stromal cells and plays a role in wound repair (152). miR-
200b targets VEGF receptors VEGF-R1 (109) and VEGF-R2
(19). Thus, miR-200b can regulate angiogenesis by targeting
both VEGF-A and its receptors.

Mir-200b silences PDGF

The PDGF family of ligands are closely related to VEGF-A
and may have evolved from a common gene (52). The
homodimer of PDGF-B recruits perivascular cells during
vasculogenesis, possibly through the generation of reactive
oxygen species and subsequent activation of extracellular-
regulated kinase 1, 2 (ERK 1, 2) (76). Endothelial-derived
PDGF-B dimer also induces progenitor cell migration and
expansion during vascular development and is critical during
vascular bed formation by mesangial progenitor cells (50,
81). VEGF ligands can also bind and activate PDGF path-
ways, a process important during mesenchymal stem cell-
associated vasculogenesis (5). PDGF pathways have been
used to control neovascularization in various animal models.
For example, nanofibrous scaffolds incorporated with PDGF
activate cytokine signaling and improve angiogenesis during
wound repair in rats (61).

As discussed in an earlier section, the processes of EMT
have been linked with cell migration and invasion during
angiogenesis. PDGF-D, which is a member of the PDGF
family, is a potent angiogenic growth factor. PDGF-D in-
duces cellular transformation and promotes tumor growth by
accelerating the proliferation rate of the tumour cells, and by
stimulation of tumour neovascularization (79). Expression of
miR-200b in PC3 PDGF-D cells (PC3 cells overexpressing
PDGF-D) led to the reversal of the EMT phenotype. In
this study, it was noted that the transfection of PC3 PDGF-D
cells with miR-200b inhibited cell migration and invasion
(72). It is widely recognized that the metastatic process of
cancer cells requires cell detachment from the site of ori-
gin, intravasation, translocation through blood and lym-
phatic vessels, extravasation, attachment to the secondary site,
and colonization. Moreover, cell detachment from basement

membrane and re-attachment play critical roles during cell
migration and invasion as well as in tumor cell metastasis.
PC3 PDGF-D cells exhibit significant enhancement in cell
detachment from culture surface and attachment to the cul-
ture surface. More importantly, transfection with miR-200b
remarkably attenuated the ability of PC3 PDGF-D cells to
attach and detach from the culture surface. LNCaP cells
(prostate adenocarcinoma cells) with a lower invasive ca-
pacity show reduced expression of endogenous PDGF-D and
an increased level of miR-200b; whereas increased expres-
sion of PDGF-D in LNCaP cells resulted in lower miR-200b
levels (72).

miR-200b silences IL-8 and CXCL1

Interleukin-8 (IL-8) and CXCL1 are potent proangiogenic
cytokines that are overexpressed in several types of tumors.
IL-8 and CXCL1 mediate their pro-angiogenic effect in an
autocrine fashion through endothelial CXCR2 receptors (92).
Beyond being a potent proangiogenic cytokine, IL-8 also has
known roles in promoting tumor self-seeding, chemoresis-
tance, and metastasis in various models (65). miR-200b can
directly affect angiogenesis by targeting EC production of
IL-8 and CXCL1. There were significant reductions in the
expression of these pro-angiogenic factor after transfection
with either miR-200a or -200b in ECs (101).

Epigenetic Regulation of miR-200b

Current developments recognize that epigenetic mecha-
nisms are involved in the regulation of miR-200 expression
(134, 142). Both loci of miR-200 family have CpG islands, 1–
200 bp downstream of miR-200b and 234–371 bp upstream of
miR-200c. During early tumor development, CpG islands of
miR-200b are unmethylated, leading to expression of miR-
200b. However, as the tumors progress, there is gain of CpG
promoter methylation, associated with lowered expression of
miR-200b and increased metastasis. Lower levels of miR-
200c have been associated with a higher frequency of lymph
node metastases in nonsmall cell lung cancer patients (15),
and miR-200 downregulation is observed in metastatic lymph
nodes (4). TGF-b induction of EMT demonstrated similar
results. Unmethylated CpG islands are associated with strong
expression of the miR-200. However, on induction of EMT
by TGF-b treatment, there is a progressive gain of CpG
methylation in both the miR-200 loci, associated with a re-
duced expression of the miR-200b. Most notably, when these
cells underwent mesenchymal-to-epithelial transition (MET)
phenotype after TGF-b withdrawal from the medium, the
previously methylated CpG islands recovered the original
unmethylated CpG status, and the expression of the miR-200
was restored. miR-200 hypermethylation-associated inacti-
vation in the TGF-b-induced EMT was accompanied by in-
creased ZEB1 expression, loss of E-cadherin, and the
acquisition of a spindle-like shape, a mesenchymal pheno-
type marked by vimentin expressing. Subsequent acquisition
of an MET phenotype on TGF-b lowering led to reduced
ZEB1 and vimentin expression (28).

Conclusion

Angiogenesis in adults is a highly regulated phenomenon.
The process needs to be initiated when required and silenced
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once the formation of blood vessels is completed. Failure in
either of the two steps mentioned earlier results in faulty an-
giogenesis. For example, in diabetic retinopathy, failure to stop
angiogenesis results in bleeding, cloudy vision, and destruc-
tion of retina. Pharmaceutical angiogenic inhibitors such as
semoxind (SU5416), orantinib (SU6668), and others are under
active clinical trials. These compounds target single gene
products or metabolites. miRs, on the other hand, can target a
number of genes. To establish a compound for traditional
drugs, many molecules are required to be synthesized and
screened to generate a single drug candidate. However,
screening approaches for miRs/antagomiRs to be used as a
drug can have faster translational value for the following
reasons: (i) the short sequence of the miRNA and (ii) speci-
ficity to its target. It has been highlighted, in this review, that
miR-200b can simultaneously regulate various factors in-
volved with angiogenesis. However, it is to be noted that the
promiscuity of miR that makes it target many genes in a patho-
physiological pathway can also result in more side effects. This
can, however, be tackled by base modification of miR se-
quence to render them more specific to target mRNA. The
short sequence of miRs provide relative easy access for their
synthetic modification and delivery. Being endogenous mol-
ecules, miRs have reduced side effects associated with them,
which might not be the case with pharmaceutical inhibitors.

miR-200b is a potent angiomiR. It is anti-angiogenic. As
discussed here, miR-200b can regulate expression at the post-
transcriptional level for various angiogenic growth factors and
transcription factors. Further, many of these factors also reg-
ulate miR-200b expression at the transcriptional level. Such
interactions of miR-200b with various angiogenic factors
justify its role as a hub miR modulating angiogenic outcomes.
The role of miR-200b in regulating epithelial-to-mesenchymal
transformation through ZEB family of transcription factors
further strengthens its significance in wound healing and tumor
biology, as in both cases EMT plays a critical role. Multiple
regulatory features of miR-200b mediated by regulating the
expression of angiogenic factors can thus be utilized toward
therapeutic intervention. Delivery of miR-200b mimic may be
valuable under conditions where regression of angiogenesis is
necessary. Similarly, silencing the level of miR-200b through
antagomiR delivery can help in conditions where angiogenesis
is required, as in the case of wound healing.
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Abbreviations Used

AGO¼ argonaute
ARE¼AU rich elements

AUF1¼AU-rich RNA-binding protein 1
bFGF¼ basic fibroblast growth factor

CAGE¼ cancer/testis antigen cancer associated gene
CXCL1¼ chemokine (C-X-C motif) ligand 1
dsRBP¼ double-strand RNA-binding protein

ECs¼ endothelial cells
EGF¼ epidermal growth factor
EMT¼ epithelial-to-mesenchymal transition

ETS-1¼ v-ets avian erythroblastosis virus E26
oncogene homolog 1

GATA¼ globin transcription factor
MET¼mesenchymal-to-epithelial transition

miR/miRNA¼micro ribonucelic acid
MMP-1¼matrix metalloproteinase 1
NSCLC¼ nonsmall cell lung carcinoma

PAI-1¼ plasminogen activator inhibitor-1
PDGF¼ platelet-derived growth factor

RBP¼RNA-binding protein
RISC¼RNA-induced silencing complex

SPRED1¼ sprouty-related protein 1
TNF-a¼ tumor necrosis factor-a
TRBP¼TAR RNA-binding protein
VEGF¼ vascular endothelial growth factor

VEGFR1¼ vascular endothelial growth factor receptor 1
VEGFR2¼ vascular endothelial growth factor receptor 2

ZEB1¼ zinc finger E-box-binding homeobox 1
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